Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 188551 by mr W last updated on 03/Mar/23

you randomly select a 5 digit number.  what′s the probability that this number  has exactly 3 different digits?

$${you}\:{randomly}\:{select}\:{a}\:\mathrm{5}\:{digit}\:{number}. \\ $$$${what}'{s}\:{the}\:{probability}\:{that}\:{this}\:{number} \\ $$$${has}\:{exactly}\:\mathrm{3}\:{different}\:{digits}? \\ $$

Answered by mr W last updated on 03/Mar/23

from 10000 to 99999 there are totally  90000 5 digit numbers.  now we want to find how many among  them have exactly 3 digits.  to select 3 digits from 0 to 9 there are  C_3 ^(10)  possibilities. say a, b, c are the  digits we have selected. to form a 5  digit number using them we have  following possibilities:  1) aaabc  ⇒C_1 ^3 ×((5!)/(3!))=60 numbers  2) aabbc  ⇒C_1 ^3 ×((5!)/(2!2!))=90 numbers  in sum we have 150 numbers using  a,b,c  ⇒150×C_3 ^(10) =18000 numbers  but among them some begin with the  digit 0 like 0abab.  to select a, b from 1 to 9 there are  C_2 ^9  possibilities.  1) 0aaab  ⇒2×((4!)/(3!))=8 numbers  2) 0aabb  ⇒((4!)/(2!2!))=6 numbers  3) 000ab  ⇒((4!)/(2!))=12 numbers  4) 00aab  ⇒2×((4!)/(2!))=24 numbers  in sum there are   (8+6+12+24)×C_2 ^9 =1800 numbers  which begin with 0.  so we have 18000−1800=16200   numbers with exactly 3 digits.  probability p=((16200)/(90000))=18% ✓

$${from}\:\mathrm{10000}\:{to}\:\mathrm{99999}\:{there}\:{are}\:{totally} \\ $$$$\mathrm{90000}\:\mathrm{5}\:{digit}\:{numbers}. \\ $$$${now}\:{we}\:{want}\:{to}\:{find}\:{how}\:{many}\:{among} \\ $$$${them}\:{have}\:{exactly}\:\mathrm{3}\:{digits}. \\ $$$${to}\:{select}\:\mathrm{3}\:{digits}\:{from}\:\mathrm{0}\:{to}\:\mathrm{9}\:{there}\:{are} \\ $$$${C}_{\mathrm{3}} ^{\mathrm{10}} \:{possibilities}.\:{say}\:{a},\:{b},\:{c}\:{are}\:{the} \\ $$$${digits}\:{we}\:{have}\:{selected}.\:{to}\:{form}\:{a}\:\mathrm{5} \\ $$$${digit}\:{number}\:{using}\:{them}\:{we}\:{have} \\ $$$${following}\:{possibilities}: \\ $$$$\left.\mathrm{1}\right)\:{aaabc} \\ $$$$\Rightarrow{C}_{\mathrm{1}} ^{\mathrm{3}} ×\frac{\mathrm{5}!}{\mathrm{3}!}=\mathrm{60}\:{numbers} \\ $$$$\left.\mathrm{2}\right)\:{aabbc} \\ $$$$\Rightarrow{C}_{\mathrm{1}} ^{\mathrm{3}} ×\frac{\mathrm{5}!}{\mathrm{2}!\mathrm{2}!}=\mathrm{90}\:{numbers} \\ $$$${in}\:{sum}\:{we}\:{have}\:\mathrm{150}\:{numbers}\:{using} \\ $$$${a},{b},{c} \\ $$$$\Rightarrow\mathrm{150}×{C}_{\mathrm{3}} ^{\mathrm{10}} =\mathrm{18000}\:{numbers} \\ $$$${but}\:{among}\:{them}\:{some}\:{begin}\:{with}\:{the} \\ $$$${digit}\:\mathrm{0}\:{like}\:\mathrm{0}{abab}. \\ $$$${to}\:{select}\:{a},\:{b}\:{from}\:\mathrm{1}\:{to}\:\mathrm{9}\:{there}\:{are} \\ $$$${C}_{\mathrm{2}} ^{\mathrm{9}} \:{possibilities}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{0}{aaab} \\ $$$$\Rightarrow\mathrm{2}×\frac{\mathrm{4}!}{\mathrm{3}!}=\mathrm{8}\:{numbers} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{0}{aabb} \\ $$$$\Rightarrow\frac{\mathrm{4}!}{\mathrm{2}!\mathrm{2}!}=\mathrm{6}\:{numbers} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{000}{ab} \\ $$$$\Rightarrow\frac{\mathrm{4}!}{\mathrm{2}!}=\mathrm{12}\:{numbers} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{00}{aab} \\ $$$$\Rightarrow\mathrm{2}×\frac{\mathrm{4}!}{\mathrm{2}!}=\mathrm{24}\:{numbers} \\ $$$${in}\:{sum}\:{there}\:{are}\: \\ $$$$\left(\mathrm{8}+\mathrm{6}+\mathrm{12}+\mathrm{24}\right)×{C}_{\mathrm{2}} ^{\mathrm{9}} =\mathrm{1800}\:{numbers} \\ $$$${which}\:{begin}\:{with}\:\mathrm{0}. \\ $$$${so}\:{we}\:{have}\:\mathrm{18000}−\mathrm{1800}=\mathrm{16200}\: \\ $$$${numbers}\:{with}\:{exactly}\:\mathrm{3}\:{digits}. \\ $$$${probability}\:{p}=\frac{\mathrm{16200}}{\mathrm{90000}}=\mathrm{18\%}\:\checkmark \\ $$

Commented by mr W last updated on 03/Mar/23

shorter way:  5 digit numbers with exact 3 different  digits:  (9/(10))×C_3 ^(10) ×3!× { (5),(3) :}}  =(9/(10))×120×6×25=16200

$${shorter}\:{way}: \\ $$$$\mathrm{5}\:{digit}\:{numbers}\:{with}\:{exact}\:\mathrm{3}\:{different} \\ $$$${digits}: \\ $$$$\left.\frac{\mathrm{9}}{\mathrm{10}}×{C}_{\mathrm{3}} ^{\mathrm{10}} ×\mathrm{3}!×\begin{cases}{\mathrm{5}}\\{\mathrm{3}}\end{cases}\right\} \\ $$$$=\frac{\mathrm{9}}{\mathrm{10}}×\mathrm{120}×\mathrm{6}×\mathrm{25}=\mathrm{16200} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com