Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 120905 by bemath last updated on 03/Nov/20

  y′ = xy^2 −(y/x)

$$\:\:\mathrm{y}'\:=\:\mathrm{xy}^{\mathrm{2}} −\frac{\mathrm{y}}{\mathrm{x}} \\ $$

Answered by Bird last updated on 03/Nov/20

⇒(y^′ /y^2 )=x−(1/(yx)) let (1/y)=z ⇒z^′ =−(y^′ /y^2 )  e ⇒−z^′  =x−(z/x) ⇒z^′  =−x+(z/x)  ⇒z^′  −(z/x) =−x ⇒xz^′ −z=−x^2   h→xz^′ −z=0 ⇒xz^′  =z ⇒(z^′ /z)=(1/x)  ⇒ln∣z∣=ln∣x∣ +c ⇒z=kx  mvc meyhod ⇒z^′ =k^′ x+k  e→k^′ x^2 +kx −kx=−x^2  ⇒  k^′ =−1 ⇒k=−x +λ ⇒  z =(−x+λ)x =−x^2  +λx ⇒  y=(1/(−x^2 +λx))

$$\Rightarrow\frac{{y}^{'} }{{y}^{\mathrm{2}} }={x}−\frac{\mathrm{1}}{{yx}}\:{let}\:\frac{\mathrm{1}}{{y}}={z}\:\Rightarrow{z}^{'} =−\frac{{y}^{'} }{{y}^{\mathrm{2}} } \\ $$$${e}\:\Rightarrow−{z}^{'} \:={x}−\frac{{z}}{{x}}\:\Rightarrow{z}^{'} \:=−{x}+\frac{{z}}{{x}} \\ $$$$\Rightarrow{z}^{'} \:−\frac{{z}}{{x}}\:=−{x}\:\Rightarrow{xz}^{'} −{z}=−{x}^{\mathrm{2}} \\ $$$${h}\rightarrow{xz}^{'} −{z}=\mathrm{0}\:\Rightarrow{xz}^{'} \:={z}\:\Rightarrow\frac{{z}^{'} }{{z}}=\frac{\mathrm{1}}{{x}} \\ $$$$\Rightarrow{ln}\mid{z}\mid={ln}\mid{x}\mid\:+{c}\:\Rightarrow{z}={kx} \\ $$$${mvc}\:{meyhod}\:\Rightarrow{z}^{'} ={k}^{'} {x}+{k} \\ $$$${e}\rightarrow{k}^{'} {x}^{\mathrm{2}} +{kx}\:−{kx}=−{x}^{\mathrm{2}} \:\Rightarrow \\ $$$${k}^{'} =−\mathrm{1}\:\Rightarrow{k}=−{x}\:+\lambda\:\Rightarrow \\ $$$${z}\:=\left(−{x}+\lambda\right){x}\:=−{x}^{\mathrm{2}} \:+\lambda{x}\:\Rightarrow \\ $$$${y}=\frac{\mathrm{1}}{−{x}^{\mathrm{2}} +\lambda{x}} \\ $$

Answered by bobhans last updated on 04/Nov/20

 y′+(y/x) = xy^2   let y^(−1) = u ⇒(du/dx) = −y^(−2)  (dy/dx)  or (dy/dx) = −y^2  (du/dx)   substituting to diff equation  gives −y^2  (du/dx) +(y/x) = xy^2   ⇔(du/dx)−(u/x) =− x , put integrating  factor v = e^(∫ −(dx/x)) = e^(ln ((1/x))) =(1/x)  multiply by (1/x) both sides  ⇔ (1/x) (du/dx)−(1/x^2 ) u =− 1   ⇔ (d/dx)((u/x)) = −1 . Integrating both  sides gives ∫ d((u/x)) = −∫dx  ⇔ (u/x) = −x+c → u =− x^2  + cx   ⇔ (1/y) = −x^2 +cx , thus y = (1/(−x^2 +cx)).

$$\:{y}'+\frac{{y}}{{x}}\:=\:{xy}^{\mathrm{2}} \\ $$$${let}\:{y}^{−\mathrm{1}} =\:{u}\:\Rightarrow\frac{{du}}{{dx}}\:=\:−{y}^{−\mathrm{2}} \:\frac{{dy}}{{dx}} \\ $$$${or}\:\frac{{dy}}{{dx}}\:=\:−{y}^{\mathrm{2}} \:\frac{{du}}{{dx}}\: \\ $$$${substituting}\:{to}\:{diff}\:{equation} \\ $$$${gives}\:−{y}^{\mathrm{2}} \:\frac{{du}}{{dx}}\:+\frac{{y}}{{x}}\:=\:{xy}^{\mathrm{2}} \\ $$$$\Leftrightarrow\frac{{du}}{{dx}}−\frac{{u}}{{x}}\:=−\:{x}\:,\:{put}\:{integrating} \\ $$$${factor}\:{v}\:=\:{e}^{\int\:−\frac{{dx}}{{x}}} =\:{e}^{\mathrm{ln}\:\left(\frac{\mathrm{1}}{{x}}\right)} =\frac{\mathrm{1}}{{x}} \\ $$$${multiply}\:{by}\:\frac{\mathrm{1}}{{x}}\:{both}\:{sides} \\ $$$$\Leftrightarrow\:\frac{\mathrm{1}}{{x}}\:\frac{{du}}{{dx}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{u}\:=−\:\mathrm{1}\: \\ $$$$\Leftrightarrow\:\frac{{d}}{{dx}}\left(\frac{{u}}{{x}}\right)\:=\:−\mathrm{1}\:.\:{Integrating}\:{both} \\ $$$${sides}\:{gives}\:\int\:{d}\left(\frac{{u}}{{x}}\right)\:=\:−\int{dx} \\ $$$$\Leftrightarrow\:\frac{{u}}{{x}}\:=\:−{x}+{c}\:\rightarrow\:{u}\:=−\:{x}^{\mathrm{2}} \:+\:{cx}\: \\ $$$$\Leftrightarrow\:\frac{\mathrm{1}}{{y}}\:=\:−{x}^{\mathrm{2}} +{cx}\:,\:{thus}\:{y}\:=\:\frac{\mathrm{1}}{−{x}^{\mathrm{2}} +{cx}}. \\ $$

Answered by Olaf last updated on 04/Nov/20

y′ = xy^2 −(y/x)  xy′+y = (xy)^2   (((xy)′)/((xy)^2 )) = 1  −(1/(xy)) = x+C  y = −(1/(x(x+C)))

$${y}'\:=\:{xy}^{\mathrm{2}} −\frac{{y}}{{x}} \\ $$$${xy}'+{y}\:=\:\left({xy}\right)^{\mathrm{2}} \\ $$$$\frac{\left({xy}\right)'}{\left({xy}\right)^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$$−\frac{\mathrm{1}}{{xy}}\:=\:{x}+\mathrm{C} \\ $$$${y}\:=\:−\frac{\mathrm{1}}{{x}\left({x}+\mathrm{C}\right)} \\ $$

Answered by TANMAY PANACEA last updated on 04/Nov/20

(dy/dx)+(y/x)=xy^2   ((xdy+ydx)/(x^2 y^2 ))=dx  ∫((d(xy))/((xy)))=∫dx  ((−1)/(xy))=x+c

$$\frac{{dy}}{{dx}}+\frac{{y}}{{x}}={xy}^{\mathrm{2}} \\ $$$$\frac{{xdy}+{ydx}}{{x}^{\mathrm{2}} {y}^{\mathrm{2}} }={dx} \\ $$$$\int\frac{{d}\left({xy}\right)}{\left({xy}\right)}=\int{dx} \\ $$$$\frac{−\mathrm{1}}{{xy}}={x}+{c} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com