Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 93818 by i jagooll last updated on 15/May/20

(y−xy^2 )dx +(x+x^2 y^2 )dy = 0

$$\left(\mathrm{y}−\mathrm{xy}^{\mathrm{2}} \right)\mathrm{dx}\:+\left(\mathrm{x}+\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \right)\mathrm{dy}\:=\:\mathrm{0} \\ $$

Answered by i jagooll last updated on 15/May/20

ydx+xdy=xy^2 dx−x^2 y^2 dy  d(xy) = x^2 y^2  ((dx/x)−dy)  ((d(xy))/((xy)^2 )) = (dx/x)−dy   ∫ ((d(xy))/((xy)^2 )) = ∫ (dx/x)−∫dy  −(1/(xy)) = ln (x)−y+c  (1/(xy)) = y+ln(x)+C ⇒ xy = (1/(y+ln(x)+C))

$$\mathrm{ydx}+\mathrm{xdy}=\mathrm{xy}^{\mathrm{2}} \mathrm{dx}−\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \mathrm{dy} \\ $$$$\mathrm{d}\left(\mathrm{xy}\right)\:=\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \:\left(\frac{\mathrm{dx}}{\mathrm{x}}−\mathrm{dy}\right) \\ $$$$\frac{\mathrm{d}\left(\mathrm{xy}\right)}{\left(\mathrm{xy}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{dx}}{\mathrm{x}}−\mathrm{dy}\: \\ $$$$\int\:\frac{\mathrm{d}\left(\mathrm{xy}\right)}{\left(\mathrm{xy}\right)^{\mathrm{2}} }\:=\:\int\:\frac{\mathrm{dx}}{\mathrm{x}}−\int\mathrm{dy} \\ $$$$−\frac{\mathrm{1}}{\mathrm{xy}}\:=\:\mathrm{ln}\:\left(\mathrm{x}\right)−\mathrm{y}+\mathrm{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{xy}}\:=\:\mathrm{y}+\mathrm{ln}\left(\mathrm{x}\right)+\mathrm{C}\:\Rightarrow\:\mathrm{xy}\:=\:\frac{\mathrm{1}}{\mathrm{y}+\mathrm{ln}\left(\mathrm{x}\right)+\mathrm{C}}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com