Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 11597 by tawa last updated on 28/Mar/17

y = x^x^(√x)  , find (dy/dx)

$$\mathrm{y}\:=\:\mathrm{x}^{\mathrm{x}^{\sqrt{\mathrm{x}}} } ,\:\mathrm{find}\:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$

Answered by sma3l2996 last updated on 28/Mar/17

y=x^e^((√x)ln(x))  =e^(e^((√x)ln(x)) ln(x))   (dy/dx)=(e^((√x)ln(x)) ln(x))′.e^(e^((√x)ln(x)) ln(x))   =[(e^((√x)ln(x)) )′ln(x)+(ln(x))′e^((√x)ln(x)) ]x^x^(√x)    (e^((√x)ln(x)) )′=((√x)ln(x))′e^((√x)ln(x)) =(((ln(x))/(2(√x)))+((√x)/x))x^(√x)   so (dy/dx)=[(((ln(x))/(2(√x)))+((√x)/x))x^(√x) ln(x)+(x^(√x) /x)]x^x^(√x)    (dy/dx)=[(((ln(x))/(2(√x)))+((√x)/x))ln(x)+(1/x))x^((√x)+x^(√x) )

$${y}={x}^{{e}^{\sqrt{{x}}{ln}\left({x}\right)} } ={e}^{{e}^{\sqrt{{x}}{ln}\left({x}\right)} {ln}\left({x}\right)} \\ $$$$\frac{{dy}}{{dx}}=\left({e}^{\sqrt{{x}}{ln}\left({x}\right)} {ln}\left({x}\right)\right)'.{e}^{{e}^{\sqrt{{x}}{ln}\left({x}\right)} {ln}\left({x}\right)} \\ $$$$=\left[\left({e}^{\sqrt{{x}}{ln}\left({x}\right)} \right)'{ln}\left({x}\right)+\left({ln}\left({x}\right)\right)'{e}^{\sqrt{{x}}{ln}\left({x}\right)} \right]{x}^{{x}^{\sqrt{{x}}} } \\ $$$$\left({e}^{\sqrt{{x}}{ln}\left({x}\right)} \right)'=\left(\sqrt{{x}}{ln}\left({x}\right)\right)'{e}^{\sqrt{{x}}{ln}\left({x}\right)} =\left(\frac{{ln}\left({x}\right)}{\mathrm{2}\sqrt{{x}}}+\frac{\sqrt{{x}}}{{x}}\right){x}^{\sqrt{{x}}} \\ $$$${so}\:\frac{{dy}}{{dx}}=\left[\left(\frac{{ln}\left({x}\right)}{\mathrm{2}\sqrt{{x}}}+\frac{\sqrt{{x}}}{{x}}\right){x}^{\sqrt{{x}}} {ln}\left({x}\right)+\frac{{x}^{\sqrt{{x}}} }{{x}}\right]{x}^{{x}^{\sqrt{{x}}} } \\ $$$$\frac{{dy}}{{dx}}=\left[\left(\frac{{ln}\left({x}\right)}{\mathrm{2}\sqrt{{x}}}+\frac{\sqrt{{x}}}{{x}}\right){ln}\left({x}\right)+\frac{\mathrm{1}}{{x}}\right){x}^{\sqrt{{x}}+{x}^{\sqrt{{x}}} } \\ $$

Commented by tawa last updated on 28/Mar/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com