Question Number 68549 by gunawan last updated on 13/Sep/19 | ||
$${y}=\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${y}^{−\mathrm{1}} =... \\ $$ | ||
Commented by mathmax by abdo last updated on 13/Sep/19 | ||
$${y}=\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow{yx}^{\mathrm{2}} \:+{y}\:={x}^{\mathrm{3}} \:\Rightarrow{x}^{\mathrm{3}} −{yx}^{\mathrm{2}} −{y}\:=\mathrm{0}\:\:\left({e}\right)\:{y}={f}\left({x}\right)\Rightarrow{x}={f}^{−\mathrm{1}} \left({y}\right) \\ $$$${x}\:={t}+\frac{{y}}{\mathrm{3}}\:\Rightarrow{x}^{\mathrm{3}} ={t}^{\mathrm{3}} \:+\mathrm{3}{t}^{\mathrm{2}} \frac{{y}}{\mathrm{3}}\:+\mathrm{3}{t}\:\frac{{y}^{\mathrm{2}} }{\mathrm{9}}+\frac{{y}^{\mathrm{3}} }{\mathrm{27}}\:={t}^{\mathrm{3}} \:+{yt}^{\mathrm{2}} \:+\frac{{y}^{\mathrm{2}} }{\mathrm{3}}{t}\:+\frac{{y}^{\mathrm{3}} }{\mathrm{27}} \\ $$$$\left({e}\right)\:\Rightarrow{t}^{\mathrm{3}} \:+{yt}^{\mathrm{2}} \:+\frac{{y}^{\mathrm{2}} }{\mathrm{3}}{t}\:+\frac{{y}^{\mathrm{3}} }{\mathrm{27}}−{y}\left({t}^{\mathrm{2}} +\mathrm{2}{t}\frac{{y}}{\mathrm{3}}+\frac{{y}^{\mathrm{2}} }{\mathrm{9}}\right)−{y}\:=\mathrm{0}\:\Rightarrow \\ $$$${t}^{\mathrm{3}} \:+{yt}^{\mathrm{2}} \:+\frac{{y}^{\mathrm{2}} }{\mathrm{3}}{t}\:+\frac{{y}^{\mathrm{3}} }{\mathrm{27}}−{yt}^{\mathrm{2}} −\mathrm{2}\frac{{y}^{\mathrm{2}} }{\mathrm{3}}{t}\:−\frac{{y}^{\mathrm{3}} }{\mathrm{9}}−{y}\:=\mathrm{0}\:\Rightarrow \\ $$$${t}^{\mathrm{3}} −\frac{{y}^{\mathrm{2}} }{\mathrm{3}}{t}\:\:−\frac{\mathrm{2}{y}^{\mathrm{3}} }{\mathrm{27}}−{y}\:=\mathrm{0}\:\Rightarrow{t}^{\mathrm{3}} −\frac{{y}^{\mathrm{2}} }{\mathrm{3}}{t}\:−\frac{\mathrm{29}{y}^{\mathrm{3}} }{\mathrm{27}}\:=\mathrm{0}\:\:\left({e}^{'} \right) \\ $$$${t}={u}+{v}\:\:\:\left({e}^{'} \right)\:\Rightarrow\left({u}+{v}\right)^{\mathrm{3}} −\frac{{y}^{\mathrm{2}} }{\mathrm{3}}\left({u}+{v}\right)−\frac{\mathrm{29}{y}^{\mathrm{3}} }{\mathrm{27}}\:=\mathrm{0}\:\Rightarrow \\ $$$${u}^{\mathrm{3}} \:+{v}^{\mathrm{3}} \:+\mathrm{3}{uv}\left({u}+{v}\right)−\frac{{y}^{\mathrm{2}} }{\mathrm{3}}\left({u}+{v}\right)\:−\frac{\mathrm{29}{y}^{\mathrm{3}} }{\mathrm{27}}\:=\mathrm{0}\:\Rightarrow \\ $$$${u}^{\mathrm{3}} \:+{v}^{\mathrm{3}} −\frac{\mathrm{29}{y}^{\mathrm{3}} }{\mathrm{27}}\:+\left({u}+{v}\right)\left(\mathrm{3}{uv}−\frac{{y}^{\mathrm{2}} }{\mathrm{3}}\right)\:=\mathrm{0}\:\Rightarrow{u}^{\mathrm{3}} \:+{v}^{\mathrm{3}} =\frac{\mathrm{29}{y}^{\mathrm{3}} }{\mathrm{27}}\:{and} \\ $$$${uv}\:=\frac{{y}^{\mathrm{2}} }{\mathrm{9}}\:\Rightarrow{u}^{\mathrm{3}} .{v}^{\mathrm{3}} \:=\frac{{y}^{\mathrm{6}} }{\mathrm{9}^{\mathrm{3}} }\:\:{so}\:{u}^{\mathrm{3}} \:{and}\:{v}^{\mathrm{3}} \:{are}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${X}^{\mathrm{2}} −\frac{\mathrm{29}{y}^{\mathrm{3}} }{\mathrm{27}}\:{X}+\frac{{y}^{\mathrm{6}} }{\mathrm{9}^{\mathrm{3}} }\:=\mathrm{0} \\ $$$$\Delta\:=\left(−\frac{\mathrm{29}}{\mathrm{27}}{y}^{\mathrm{3}} \right)^{\mathrm{2}} −\frac{\mathrm{4}{y}^{\mathrm{6}} }{\mathrm{9}^{\mathrm{3}} }\:=\left(\left(\frac{\mathrm{29}}{\mathrm{27}}\right)^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{9}^{\mathrm{3}} }\right){y}^{\mathrm{6}} \\ $$$${X}_{\mathrm{1}} =\frac{\frac{\mathrm{29}}{\mathrm{27}}{y}^{\mathrm{3}} \:+\sqrt{\Delta}}{\mathrm{2}}\:\:\:{and}\:{X}_{\mathrm{2}} =\frac{\frac{\mathrm{29}}{\mathrm{27}}{y}^{\mathrm{3}} −\sqrt{\Delta}}{\mathrm{2}}\:\Rightarrow{u}\:=^{\mathrm{3}} \sqrt{{X}_{\mathrm{1}} }\:\:{and}\:{v}=^{\mathrm{3}} \sqrt{{X}_{\mathrm{2}} } \\ $$$${u}=^{\mathrm{3}} \sqrt{{X}_{\mathrm{2}} }\:{and}\:{v}=^{\mathrm{3}} \sqrt{{X}_{\mathrm{1}} } \\ $$$${if}\:{we}\:{take}\:{t}\:=^{\mathrm{3}} \sqrt{{X}_{\mathrm{1}} }\:+^{\mathrm{3}} \sqrt{{X}_{\mathrm{2}} }\:\Rightarrow{x}\:={f}^{−\mathrm{1}} \left({y}\right)\:={t}+\frac{{y}}{\mathrm{3}} \\ $$$$=^{\mathrm{3}} \sqrt{\frac{\left.\frac{\mathrm{29}}{\mathrm{27}}{y}^{\mathrm{3}} +\sqrt{\left(\left(\frac{\mathrm{29}}{\mathrm{27}}\right)^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{9}^{\mathrm{3}} }\right.}\right){y}^{\mathrm{3}} }{\mathrm{2}}}\:+^{\mathrm{3}} \sqrt{\frac{\frac{\mathrm{29}}{\mathrm{27}}{y}^{\mathrm{3}} −\sqrt{\left(\left(\frac{\mathrm{29}}{\mathrm{27}}\right)^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{9}^{\mathrm{3}} }\right)}{y}^{\mathrm{3}} }{\mathrm{2}}} \\ $$$$+\frac{{y}}{\mathrm{3}} \\ $$ | ||
Commented by gunawan last updated on 13/Sep/19 | ||
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$ | ||
Commented by mathmax by abdo last updated on 13/Sep/19 | ||
$${you}\:{are}\:{welcome}\:{sir}. \\ $$ | ||
Answered by MJS last updated on 13/Sep/19 | ||
$${x}^{\mathrm{3}} −{yx}^{\mathrm{2}} −{y}=\mathrm{0} \\ $$$${x}={t}+\frac{{y}}{\mathrm{3}} \\ $$$${t}^{\mathrm{3}} −\frac{{y}^{\mathrm{2}} }{\mathrm{3}}{t}−\frac{{y}}{\mathrm{27}}\left(\mathrm{2}{y}^{\mathrm{2}} +\mathrm{27}\right)=\mathrm{0} \\ $$$${D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}=\frac{{y}^{\mathrm{2}} }{\mathrm{108}}\left(\mathrm{4}{y}^{\mathrm{2}} +\mathrm{27}\right)\geqslant\mathrm{0}\forall{y}\in\mathbb{R} \\ $$$$\Rightarrow\:\mathrm{Cardano}'\mathrm{s}\:\mathrm{method} \\ $$$${t}=\sqrt[{\mathrm{3}}]{\frac{{y}}{\mathrm{54}}\left(\mathrm{2}{y}^{\mathrm{2}} +\mathrm{27}−\mathrm{3}\sqrt{\mathrm{12}{y}^{\mathrm{2}} +\mathrm{81}}\right.}+\sqrt[{\mathrm{3}}]{\frac{{y}}{\mathrm{54}}\left(\mathrm{2}{y}^{\mathrm{2}} +\mathrm{27}+\mathrm{3}\sqrt{\mathrm{12}{y}^{\mathrm{2}} +\mathrm{81}}\right.} \\ $$$${x}={t}+\frac{{y}}{\mathrm{3}} \\ $$$$\Rightarrow \\ $$$${y}^{−\mathrm{1}} =\frac{{x}}{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\frac{{x}}{\mathrm{54}}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{27}−\mathrm{3}\sqrt{\mathrm{12}{x}^{\mathrm{2}} +\mathrm{81}}\right.}+\sqrt[{\mathrm{3}}]{\frac{{x}}{\mathrm{54}}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{27}+\mathrm{3}\sqrt{\mathrm{12}{x}^{\mathrm{2}} +\mathrm{81}}\right.} \\ $$ | ||
Commented by MJS last updated on 13/Sep/19 | ||
$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0} \\ $$$$\mathrm{if}\:{D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}>\mathrm{0}\:\Rightarrow\:\mathrm{Cardano}'\mathrm{s}\:\mathrm{method} \\ $$$$\mathrm{if}\:{D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}<\mathrm{0}\:\Rightarrow\:\mathrm{trigonometric}\:\mathrm{method} \\ $$$$\mathrm{look}\:\mathrm{at}\:\mathrm{qu}.\:\mathrm{68141},\:\mathrm{the}\:\mathrm{formulas}\:\mathrm{are}\:\mathrm{there} \\ $$ | ||
Commented by gunawan last updated on 13/Sep/19 | ||
$$\mathrm{Nice}\:\mathrm{Sir} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{Cardano}'\mathrm{s}\:\mathrm{method}\:? \\ $$ | ||