Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 95098 by i jagooll last updated on 23/May/20

[ (y/(x^2 +y^2 )) + (x/(x^2 +y^2 )) ] dx + [(y/(x^2 +y^2 ))−(x/(x^2 +y^2 )) ]dy=0

$$\left[\:\frac{\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:+\:\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\right]\:\mathrm{dx}\:+\:\left[\frac{\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }−\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\right]\mathrm{dy}=\mathrm{0} \\ $$

Answered by bobhans last updated on 23/May/20

let x = r cos θ ; y = r sin θ ; x^2 +y^2 =r^2   dx = cos θdr−rsin θdθ ; dy = rcos θ dθ+sin θdr  ⇒(((sin θ)/r)+((cos θ)/r))(cos θ dr−rsin θ dθ)+  (((sin θ)/r)−((cos θ)/r))(sin θ dr +rcos θ dθ ) = 0  ⇒(sin θ+cos θ)(rcos θ dr−r^2 sin θ dθ) +  (sin θ−cos θ)(rsin θ dr +r^2 cos θ dθ )= 0  ⇒(1/2)rsin 2θ dr −r^2 sin^2 θ dθ +rcos^2 θ dr −(1/2)r^2 sin 2θ dθ   + r sin^2 θ dr +(1/2)r^2 sin 2θ dθ −(1/2)rsin 2θ dr−r^2 cos^2 θ dθ = 0  ⇒r cos^2 θ dr + rsin^2 θ dr = r^2 (sin^2 θ+cos^2 θ) dθ  ⇒dr = r dθ ; ∫ (dr/r) = θ+ c   ln r = θ + c ⇒ r = Ce^θ  ⇒(√(x^2 +y^2 )) = ± Ce^(tan^(−1) ((y/x)))  .  done!!

$$\mathrm{let}\:\mathrm{x}\:=\:\mathrm{r}\:\mathrm{cos}\:\theta\:;\:\mathrm{y}\:=\:\mathrm{r}\:\mathrm{sin}\:\theta\:;\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{r}^{\mathrm{2}} \\ $$$$\mathrm{dx}\:=\:\mathrm{cos}\:\theta\mathrm{dr}−\mathrm{rsin}\:\theta\mathrm{d}\theta\:;\:\mathrm{dy}\:=\:\mathrm{rcos}\:\theta\:\mathrm{d}\theta+\mathrm{sin}\:\theta\mathrm{dr} \\ $$$$\Rightarrow\left(\frac{\mathrm{sin}\:\theta}{\mathrm{r}}+\frac{\mathrm{cos}\:\theta}{\mathrm{r}}\right)\left(\mathrm{cos}\:\theta\:\mathrm{dr}−\mathrm{rsin}\:\theta\:\mathrm{d}\theta\right)+ \\ $$$$\left(\frac{\mathrm{sin}\:\theta}{\mathrm{r}}−\frac{\mathrm{cos}\:\theta}{\mathrm{r}}\right)\left(\mathrm{sin}\:\theta\:\mathrm{dr}\:+\mathrm{rcos}\:\theta\:\mathrm{d}\theta\:\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right)\left(\mathrm{rcos}\:\theta\:\mathrm{dr}−\mathrm{r}^{\mathrm{2}} \mathrm{sin}\:\theta\:\mathrm{d}\theta\right)\:+ \\ $$$$\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\right)\left(\mathrm{rsin}\:\theta\:\mathrm{dr}\:+\mathrm{r}^{\mathrm{2}} \mathrm{cos}\:\theta\:\mathrm{d}\theta\:\right)=\:\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\mathrm{rsin}\:\mathrm{2}\theta\:\mathrm{dr}\:−\mathrm{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta\:\mathrm{d}\theta\:+\mathrm{rcos}\:^{\mathrm{2}} \theta\:\mathrm{dr}\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{r}^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta\:\mathrm{d}\theta\: \\ $$$$+\:\mathrm{r}\:\mathrm{sin}\:^{\mathrm{2}} \theta\:\mathrm{dr}\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{r}^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta\:\mathrm{d}\theta\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{rsin}\:\mathrm{2}\theta\:\mathrm{dr}−\mathrm{r}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta\:\mathrm{d}\theta\:=\:\mathrm{0} \\ $$$$\Rightarrow\mathrm{r}\:\mathrm{cos}\:^{\mathrm{2}} \theta\:\mathrm{dr}\:+\:\mathrm{rsin}\:^{\mathrm{2}} \theta\:\mathrm{dr}\:=\:\mathrm{r}^{\mathrm{2}} \left(\mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{cos}\:^{\mathrm{2}} \theta\right)\:\mathrm{d}\theta \\ $$$$\Rightarrow\mathrm{dr}\:=\:\mathrm{r}\:\mathrm{d}\theta\:;\:\int\:\frac{\mathrm{dr}}{\mathrm{r}}\:=\:\theta+\:\mathrm{c}\: \\ $$$$\mathrm{ln}\:\mathrm{r}\:=\:\theta\:+\:\mathrm{c}\:\Rightarrow\:\mathrm{r}\:=\:\mathrm{Ce}^{\theta} \:\Rightarrow\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:=\:\pm\:\mathrm{Ce}^{\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{y}}{\mathrm{x}}\right)} \:. \\ $$$$\mathrm{done}!! \\ $$$$ \\ $$

Commented by i jagooll last updated on 23/May/20

waw..=great

$$\mathrm{waw}..=\mathrm{great} \\ $$$$ \\ $$

Commented by peter frank last updated on 23/May/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by peter frank last updated on 23/May/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by mr W last updated on 23/May/20

(y+x)dx+(y−x)dy=0  (dy/dx)=((x+y)/(x−y))  let y=xu  u+x(du/dx)=((1+u)/(1−u))  x(du/dx)=((1+u^2 )/(1−u))  ∫((1−u)/(1+u^2 ))du=∫(dx/x)  tan^(−1) u−(1/2)ln (1+u^2 )=ln x+C  ⇒2 tan^(−1) (y/x)=ln (x^2 +y^2 )+C

$$\left({y}+{x}\right){dx}+\left({y}−{x}\right){dy}=\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}=\frac{{x}+{y}}{{x}−{y}} \\ $$$${let}\:{y}={xu} \\ $$$${u}+{x}\frac{{du}}{{dx}}=\frac{\mathrm{1}+{u}}{\mathrm{1}−{u}} \\ $$$${x}\frac{{du}}{{dx}}=\frac{\mathrm{1}+{u}^{\mathrm{2}} }{\mathrm{1}−{u}} \\ $$$$\int\frac{\mathrm{1}−{u}}{\mathrm{1}+{u}^{\mathrm{2}} }{du}=\int\frac{{dx}}{{x}} \\ $$$$\mathrm{tan}^{−\mathrm{1}} {u}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\mathrm{1}+{u}^{\mathrm{2}} \right)=\mathrm{ln}\:{x}+{C} \\ $$$$\Rightarrow\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{{y}}{{x}}=\mathrm{ln}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com