Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 193971 by mnjuly1970 last updated on 24/Jun/23

        y= ⌊ x^( 2)  ⌋ + ⌊ x ⌋               ⇒  R_y  =?       Range

$$ \\ $$$$\:\:\:\:\:\:{y}=\:\lfloor\:{x}^{\:\mathrm{2}} \:\rfloor\:+\:\lfloor\:{x}\:\rfloor\:\: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:{R}_{{y}} \:=?\:\:\:\:\:\:\:{Range} \\ $$

Answered by MM42 last updated on 24/Jun/23

R_y ={−1,0,1,2,3,...}

$${R}_{{y}} =\left\{−\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},...\right\} \\ $$

Answered by mahdipoor last updated on 24/Jun/23

get    x=(√(n^2 +m))      n∈W,0≤m∈R<2n+1  [x^2 ]+[x]=n^2 +[m]+n         0≤[m]<2n+1  R_(y1) ={n^2 +n+m∣n,m∈W,m≤2n}  ,  get    x=−(√(n^2 +m))≠0      n∈W,0≤m∈R<2n+1  [x^2 ]+[x]=n^2 +[m]−n−1        0≤[m]<2n+1  R_(y2) ={n^2 −n−1+m∣n,m∈W,m≤2n}  ,  ∩⇒R_y ={r∈Z∣n^2 −n−1≤r≤n^2 +3n,n∈W}  for ∀n∈W   n^2 +3n≥(n+1)^2 −(n+1)−1  ⇒⇒R_y ={−1,0,1,2,...,∞}

$${get}\:\:\:\:{x}=\sqrt{{n}^{\mathrm{2}} +{m}}\:\:\:\:\:\:{n}\in{W},\mathrm{0}\leqslant{m}\in{R}<\mathrm{2}{n}+\mathrm{1} \\ $$$$\left[{x}^{\mathrm{2}} \right]+\left[{x}\right]={n}^{\mathrm{2}} +\left[{m}\right]+{n}\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant\left[{m}\right]<\mathrm{2}{n}+\mathrm{1} \\ $$$${R}_{{y}\mathrm{1}} =\left\{{n}^{\mathrm{2}} +{n}+{m}\mid{n},{m}\in{W},{m}\leqslant\mathrm{2}{n}\right\} \\ $$$$, \\ $$$${get}\:\:\:\:{x}=−\sqrt{{n}^{\mathrm{2}} +{m}}\neq\mathrm{0}\:\:\:\:\:\:{n}\in{W},\mathrm{0}\leqslant{m}\in{R}<\mathrm{2}{n}+\mathrm{1} \\ $$$$\left[{x}^{\mathrm{2}} \right]+\left[{x}\right]={n}^{\mathrm{2}} +\left[{m}\right]−{n}−\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}\leqslant\left[{m}\right]<\mathrm{2}{n}+\mathrm{1} \\ $$$${R}_{{y}\mathrm{2}} =\left\{{n}^{\mathrm{2}} −{n}−\mathrm{1}+{m}\mid{n},{m}\in{W},{m}\leqslant\mathrm{2}{n}\right\} \\ $$$$, \\ $$$$\cap\Rightarrow{R}_{{y}} =\left\{{r}\in{Z}\mid{n}^{\mathrm{2}} −{n}−\mathrm{1}\leqslant{r}\leqslant{n}^{\mathrm{2}} +\mathrm{3}{n},{n}\in{W}\right\} \\ $$$${for}\:\forall{n}\in{W}\:\:\:{n}^{\mathrm{2}} +\mathrm{3}{n}\geqslant\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{1}\right)−\mathrm{1} \\ $$$$\Rightarrow\Rightarrow{R}_{{y}} =\left\{−\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{2},...,\infty\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com