Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204054 by hardmath last updated on 05/Feb/24

y = (√(sinx)) + cos^3 x  find:  y^′  = ?

$$\mathrm{y}\:=\:\sqrt{\mathrm{sinx}}\:+\:\mathrm{cos}^{\mathrm{3}} \mathrm{x} \\ $$$$\mathrm{find}:\:\:\mathrm{y}^{'} \:=\:? \\ $$

Answered by deleteduser1 last updated on 05/Feb/24

y′=((cos(x))/( 2(√(sinx))))−3sin(x)cos^2 x

$${y}'=\frac{{cos}\left({x}\right)}{\:\mathrm{2}\sqrt{{sinx}}}−\mathrm{3}{sin}\left({x}\right){cos}^{\mathrm{2}} {x} \\ $$

Answered by Mathspace last updated on 06/Feb/24

y^′ =(((sinx)^′ )/(2(√(sinx)))) +3cos^2 x(cosx)′  =((cosx)/(2(√(sinx))))−3sinx cos^2 x

$${y}^{'} =\frac{\left({sinx}\right)^{'} }{\mathrm{2}\sqrt{{sinx}}}\:+\mathrm{3}{cos}^{\mathrm{2}} {x}\left({cosx}\right)' \\ $$$$=\frac{{cosx}}{\mathrm{2}\sqrt{{sinx}}}−\mathrm{3}{sinx}\:{cos}^{\mathrm{2}} {x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com