| ||
Question Number 195263 by dimentri last updated on 28/Jul/23 | ||
![]() | ||
$$\:\:\:\:\:\:\begin{cases}{{y}\:\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\:=\:\mathrm{2}}\\{\mathrm{4sin}\:{x}−\mathrm{2}{y}\:\mathrm{cos}\:{x}\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\mathrm{tan}\:{x}\:=?\: \\ $$ | ||
Answered by cortano12 last updated on 28/Jul/23 | ||
![]() | ||
$$\:\:\:\:\:\:\begin{cases}{ }\\{ }\end{cases} \\ $$$$ \\ $$$$ \begin{array}{|c|}{ }\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\begin{cases}{\mathrm{4}{y}\:\mathrm{sin}\:{x}\:+\:\mathrm{4}\:\mathrm{cos}\:{x}\:=\:\mathrm{8}}\\{\mathrm{4}{y}\:\mathrm{sin}\:{x}\:−\mathrm{2}{y}^{\mathrm{2}} \:\mathrm{cos}\:{x}\:=\:{y}^{\mathrm{2}} }\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{4}+\mathrm{2}{y}^{\mathrm{2}} \right)\:\mathrm{cos}\:{x}\:=\:\mathrm{8}−{y}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\begin{array}{|c|}{ \frac{\mathrm{8}−{y}^{\mathrm{2}} }{\mathrm{2}{y}^{\mathrm{2}} +\mathrm{4}}}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{y}^{\mathrm{2}} \:\mathrm{sin}\:{x}\:+\mathrm{2}{y}\:\mathrm{cos}\:{x}\:=\:\mathrm{4}{y}}\\{\mathrm{4}\:\mathrm{sin}\:{x}\:−\mathrm{2}{y}\:\mathrm{cos}\:{x}\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}{y}^{\mathrm{2}} +\mathrm{4}\right)\:\mathrm{sin}\:{x}\:=\:\mathrm{5}{y} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\begin{array}{|c|}{ \frac{\mathrm{5}{y}}{\mathrm{2}{y}^{\mathrm{2}} +\mathrm{4}}}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\:\:\begin{array}{|c|}{ \frac{\mathrm{5}{y}}{\mathrm{2}{y}^{\mathrm{2}} +\mathrm{4}}\:.\:\frac{\mathrm{2}{y}^{\mathrm{2}} +\mathrm{4}}{\mathrm{8}−{y}^{\mathrm{2}} }=\frac{\mathrm{5}{y}}{\mathrm{8}−{y}^{\mathrm{2}} }}\\\hline\end{array} \\ $$ | ||
Answered by Frix last updated on 28/Jul/23 | ||
![]() | ||
$$\begin{cases}{{y}=\frac{\mathrm{2}−\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}}\\{{y}=\frac{\mathrm{4sin}\:{x}}{\mathrm{1}+\mathrm{2cos}\:{x}}}\end{cases} \\ $$$$\frac{\mathrm{2}−\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}=\frac{\mathrm{4sin}\:{x}}{\mathrm{1}+\mathrm{2cos}\:{x}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:{x}\:+\frac{\mathrm{3}}{\mathrm{2}}\mathrm{cos}\:{x}\:−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{cos}\:{x}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\left[\vee\mathrm{cos}\:{x}\:=−\mathrm{2}\right] \\ $$$$\mathrm{tan}\:{x}\:=\pm\frac{\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:{x}}}{\mathrm{cos}\:{x}}=\pm\sqrt{\mathrm{3}} \\ $$ | ||