Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 52820 by 33 last updated on 13/Jan/19

y = log{(√x) +(1/((√x)   ))}^2                      show that  x(x+1)^2 y_2  + (x+1)^2 y_1  = 2

$${y}\:=\:{log}\left\{\sqrt{{x}}\:+\frac{\mathrm{1}}{\sqrt{{x}}\:\:\:}\right\}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${show}\:{that} \\ $$$${x}\left({x}+\mathrm{1}\right)^{\mathrm{2}} {y}_{\mathrm{2}} \:+\:\left({x}+\mathrm{1}\right)^{\mathrm{2}} {y}_{\mathrm{1}} \:=\:\mathrm{2} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jan/19

y=ln(x+2+(1/x))=ln(((x^2 +2x+1)/x))  y=2ln(x+1)−lnx  y_1 =(2/(x+1))−(1/x)=((2x−x−1)/(x^2 +x))=((x−1)/(x^2 +x))  y_2 =((x^2 +x(1)−(x−1)(2x+1))/(x^2 (x+1)^2 ))  y_2 =((x^2 +x−2x^2 −x+2x+1)/(x^2 (x+1)^2 ))=((−x^2 +2x+1)/(x^2 (x+1)^2 ))  x(x+1)^2 y_2 =−x+2+(1/x)  (x+1)^2 y_1 =(x+1)(x+1)×((x−1)/(x(x+1)))=((x^2 −1)/x)=x−(1/x)  so x(x+1)^2 y_2 +(x+1)^2 y_1   =−x+2+(1/x)+x−(1/x)  =2 hence proved

$${y}={ln}\left({x}+\mathrm{2}+\frac{\mathrm{1}}{{x}}\right)={ln}\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}{{x}}\right) \\ $$$${y}=\mathrm{2}{ln}\left({x}+\mathrm{1}\right)−{lnx} \\ $$$${y}_{\mathrm{1}} =\frac{\mathrm{2}}{{x}+\mathrm{1}}−\frac{\mathrm{1}}{{x}}=\frac{\mathrm{2}{x}−{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}}=\frac{{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}} \\ $$$${y}_{\mathrm{2}} =\frac{{x}^{\mathrm{2}} +{x}\left(\mathrm{1}\right)−\left({x}−\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${y}_{\mathrm{2}} =\frac{{x}^{\mathrm{2}} +{x}−\mathrm{2}{x}^{\mathrm{2}} −{x}+\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{−{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${x}\left({x}+\mathrm{1}\right)^{\mathrm{2}} {y}_{\mathrm{2}} =−{x}+\mathrm{2}+\frac{\mathrm{1}}{{x}} \\ $$$$\left({x}+\mathrm{1}\right)^{\mathrm{2}} {y}_{\mathrm{1}} =\left({x}+\mathrm{1}\right)\left({x}+\mathrm{1}\right)×\frac{{x}−\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)}=\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}}={x}−\frac{\mathrm{1}}{{x}} \\ $$$${so}\:{x}\left({x}+\mathrm{1}\right)^{\mathrm{2}} {y}_{\mathrm{2}} +\left({x}+\mathrm{1}\right)^{\mathrm{2}} {y}_{\mathrm{1}} \\ $$$$=−{x}+\mathrm{2}+\frac{\mathrm{1}}{{x}}+{x}−\frac{\mathrm{1}}{{x}} \\ $$$$=\mathrm{2}\:{hence}\:{proved} \\ $$

Commented by 33 last updated on 14/Jan/19

thank you so much

$${thank}\:{you}\:{so}\:{much} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19

most welcome...

$${most}\:{welcome}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com