Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 184346 by Matica last updated on 05/Jan/23

  ∫ ((xdx)/(a+bx)) = ?

$$\:\:\int\:\frac{{xdx}}{{a}+{bx}}\:=\:? \\ $$

Answered by SEKRET last updated on 05/Jan/23

  (1/b) ∙∫ ((bx+a−a)/(bx+a))dx=   (1/b)∙∫ 1 −a∙(1/(bx+a))dx=(x/b)−(a/b^2 )∙ln(bx+a)+C     aswer (1/b^2 )∙(bx−a∙ln(bx+a)) +C

$$\:\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}}\:\centerdot\int\:\frac{\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}}\boldsymbol{\mathrm{dx}}= \\ $$$$\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}}\centerdot\int\:\mathrm{1}\:−\boldsymbol{\mathrm{a}}\centerdot\frac{\mathrm{1}}{\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}}\boldsymbol{\mathrm{dx}}=\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{b}}}−\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{b}}^{\mathrm{2}} }\centerdot\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}\right)+\boldsymbol{\mathrm{C}} \\ $$$$\:\:\:\boldsymbol{\mathrm{aswer}}\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}^{\mathrm{2}} }\centerdot\left(\boldsymbol{\mathrm{bx}}−\boldsymbol{\mathrm{a}}\centerdot\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{bx}}+\boldsymbol{\mathrm{a}}\right)\right)\:+\boldsymbol{\mathrm{C}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com