Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 149474 by mathdanisur last updated on 05/Aug/21

x;y;z≥0  and  x+y+z=3  prove that:  (x^5 )^(1/(12))  + (y^5 )^(1/(12))  + (z^5 )^(1/(12))  ≥ xy + yz + zx

$${x};{y};{z}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:{x}+{y}+{z}=\mathrm{3}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\sqrt[{\mathrm{12}}]{{x}^{\mathrm{5}} }\:+\:\sqrt[{\mathrm{12}}]{{y}^{\mathrm{5}} }\:+\:\sqrt[{\mathrm{12}}]{{z}^{\mathrm{5}} }\:\geqslant\:{xy}\:+\:{yz}\:+\:{zx} \\ $$

Commented by dumitrel last updated on 06/Aug/21

hint ?

$${hint}\:? \\ $$

Commented by mathdanisur last updated on 06/Aug/21

Ser, inequality is given in this way

$$\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{given}\:\mathrm{in}\:\mathrm{this}\:\mathrm{way} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com