Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 117228 by bemath last updated on 10/Oct/20

(((x+y)/(y−1))) dx −(1/2)(((x+1)/(y−1)))^2 dy = 0

$$\left(\frac{{x}+{y}}{{y}−\mathrm{1}}\right)\:{dx}\:−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{x}+\mathrm{1}}{{y}−\mathrm{1}}\right)^{\mathrm{2}} {dy}\:=\:\mathrm{0} \\ $$

Answered by TANMAY PANACEA last updated on 10/Oct/20

(((x+y)/(y−1)))dx−(1/2)(((x+y)/(y−1))−1)^2 dy=0  (((x+y)/(y−1)))dx−(1/2)(((x+y)/(y−1)))^2 dy+(((x+y)/(y−1)))dy−(1/2)dy=0  (((x+y)/(y−1)))(dx+dy)−(1/2)(((x+y)/(y−1)))^2 dy−(dy/2)=0  (x+y)d(x+y)−(1/2)(x+y)^2 (y−1)d(y−1)−(dy/2)=0  (x+y)d(x+y)−(1/2)(x+y)d(y−1)^2 ×(1/2)−(dy/2)=0  d(x+y)^2 −(x+y)×(1/2)d(y−1)^2 −((d(y−1))/2)=0  2d(x+y)^2 −(x+y)d(y−1)^2 −d(y−1)=0  wait

$$\left(\frac{{x}+{y}}{{y}−\mathrm{1}}\right){dx}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{x}+{y}}{{y}−\mathrm{1}}−\mathrm{1}\right)^{\mathrm{2}} {dy}=\mathrm{0} \\ $$$$\left(\frac{{x}+{y}}{{y}−\mathrm{1}}\right){dx}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{x}+{y}}{{y}−\mathrm{1}}\right)^{\mathrm{2}} {dy}+\left(\frac{{x}+{y}}{{y}−\mathrm{1}}\right){dy}−\frac{\mathrm{1}}{\mathrm{2}}{dy}=\mathrm{0} \\ $$$$\left(\frac{{x}+{y}}{{y}−\mathrm{1}}\right)\left({dx}+{dy}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{x}+{y}}{{y}−\mathrm{1}}\right)^{\mathrm{2}} {dy}−\frac{{dy}}{\mathrm{2}}=\mathrm{0} \\ $$$$\left({x}+{y}\right){d}\left({x}+{y}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}\right)^{\mathrm{2}} \left({y}−\mathrm{1}\right){d}\left({y}−\mathrm{1}\right)−\frac{{dy}}{\mathrm{2}}=\mathrm{0} \\ $$$$\left({x}+{y}\right){d}\left({x}+{y}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}\right){d}\left({y}−\mathrm{1}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{2}}−\frac{{dy}}{\mathrm{2}}=\mathrm{0} \\ $$$${d}\left({x}+{y}\right)^{\mathrm{2}} −\left({x}+{y}\right)×\frac{\mathrm{1}}{\mathrm{2}}{d}\left({y}−\mathrm{1}\right)^{\mathrm{2}} −\frac{{d}\left({y}−\mathrm{1}\right)}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{2}{d}\left({x}+{y}\right)^{\mathrm{2}} −\left({x}+{y}\right){d}\left({y}−\mathrm{1}\right)^{\mathrm{2}} −{d}\left({y}−\mathrm{1}\right)=\mathrm{0} \\ $$$${wait} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com