Question Number 183989 by HeferH last updated on 01/Jan/23 | ||
$$\frac{\sqrt{{x}}\:+\:\sqrt{{x}\:−\:\mathrm{4}{a}}}{\:\sqrt{{x}}\:−\:\sqrt{{x}\:−\:\mathrm{4}{a}}}\:=\:{a}\:\neq\:\mathrm{0} \\ $$$$\:{find}\:``{x}''\:{in}\:{terms}\:{of}\:``{a}''.\: \\ $$ | ||
Commented by Frix last updated on 01/Jan/23 | ||
$$\mathrm{I}\:\mathrm{get}\:{x}=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 01/Jan/23 | ||
$$\frac{\sqrt{{x}}\:+\:\sqrt{{x}\:−\:\mathrm{4}{a}}}{\:\sqrt{{x}}\:−\:\sqrt{{x}\:−\:\mathrm{4}{a}}}\:=\:{a}\:\neq\:\mathrm{0} \\ $$$$\:{find}\:``{x}''\:{in}\:{terms}\:{of}\:``{a}''.\: \\ $$$$\frac{\sqrt{{x}}\:+\sqrt{{x}−\mathrm{4}{a}}\:}{\:\sqrt{{x}}\:−\sqrt{{x}−\mathrm{4}{a}}\:}+\mathrm{1}={a}+\mathrm{1} \\ $$$$\frac{\mathrm{2}\sqrt{{x}}}{\:\sqrt{{x}}\:−\sqrt{{x}−\mathrm{4}{a}}\:}={a}+\mathrm{1} \\ $$$$\mathrm{2}\sqrt{{x}}\:={a}\sqrt{{x}}\:−{a}\sqrt{{x}−\mathrm{4}{a}}\:+\sqrt{{x}}\:−\sqrt{{x}−\mathrm{4}{a}}\: \\ $$$${a}\sqrt{{x}}\:−\sqrt{{x}}\:={a}\sqrt{{x}−\mathrm{4}{a}}\:+\sqrt{{x}−\mathrm{4}{a}}\: \\ $$$$\sqrt{{x}}\:\left({a}−\mathrm{1}\right)=\sqrt{{x}−\mathrm{4}{a}}\:\left({a}+\mathrm{1}\right) \\ $$$$\frac{\sqrt{{x}−\mathrm{4}{a}}\:}{\:\sqrt{{x}}}=\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}} \\ $$$$\frac{{x}−\mathrm{4}{a}}{{x}}=\left(\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\mathrm{1}−\frac{\mathrm{4}{a}}{{x}}=\frac{{a}^{\mathrm{2}} −\mathrm{2}{a}+\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1}} \\ $$$$−\frac{\mathrm{4}{a}}{{x}}=\frac{{a}^{\mathrm{2}} −\mathrm{2}{a}+\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1}}−\mathrm{1}=\frac{−\mathrm{4}{a}}{\left({a}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{\left({a}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:\:\:\:\left[\because\:{a}\neq\mathrm{0}\right] \\ $$$${x}=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$ | ||
Answered by a.lgnaoui last updated on 01/Jan/23 | ||
$$\frac{\left(\sqrt{{x}}\:+\sqrt{{x}−\mathrm{4}{a}}\:\right)^{\mathrm{2}} }{\mathrm{4}{a}}={a} \\ $$$$\mathrm{2}{x}−\mathrm{4}{a}+\mathrm{2}\sqrt{{x}\left({x}−\mathrm{4}{a}\right)}\:=\mathrm{4}{a}^{\mathrm{2}} \\ $$$$\sqrt{{x}\left({x}−\mathrm{4}{a}\right)}\:=\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}{a}−{x} \\ $$$${x}\left({x}−\mathrm{4}{a}\right)=\mathrm{4}{a}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} +{x}^{\mathrm{2}} +\mathrm{8}{a}^{\mathrm{3}} −\mathrm{4}{a}^{\mathrm{2}} {x}−\mathrm{4}{ax} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}{ax}={x}^{\mathrm{2}} −\mathrm{4}{ax}\left({a}+\mathrm{1}\right)+\mathrm{4}{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1}\right) \\ $$$$\mathrm{0}=\mathrm{4}{a}^{\mathrm{2}} \left({a}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{a}^{\mathrm{2}} {x} \\ $$$$\:\:\:\:\:\:\:\:\:\:{x}=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$ \\ $$ | ||
Answered by manolex last updated on 01/Jan/23 | ||
$${m}=\sqrt{{x}} \\ $$$${n}=\sqrt{{x}−\mathrm{4}{a}} \\ $$$$\frac{{m}+{n}}{{m}−{n}}={a} \\ $$$${m}^{\mathrm{2}} ={x} \\ $$$${n}^{\mathrm{2}} ={x}−\mathrm{4}{a} \\ $$$${m}^{\mathrm{2}} −{n}^{\mathrm{2}} =\mathrm{4}{a} \\ $$$$\left({m}+{n}\right)\left({m}−{n}\right)=\mathrm{4}{a} \\ $$$$\frac{{m}+{n}}{{m}−{n}}={a}\:\:\:\:\:\:\:\:{m}\neq{n} \\ $$$$\left({m}+{n}\right)^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \\ $$$${m}+{n}=\mathrm{2}{a}\:\:\:\:\vee\:\:\:\:{m}+{n}=−\mathrm{2}{a} \\ $$$${m}−{n}=\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}−{n}=−\mathrm{2} \\ $$$$\mathrm{2}{m}=\mathrm{2}{a}+\mathrm{2}\:\:\:\:\:\:\:\:\:\:\mathrm{2}{m}=−\mathrm{2}\left({a}+\mathrm{1}\right) \\ $$$${m}={a}+\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}=−\left({a}+\mathrm{1}\right) \\ $$$$\sqrt{{x}}={a}+\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{{x}}=−\left({a}+\mathrm{1}\right) \\ $$$${x}=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${solucion}\:\:\:\:{x}=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${comprobacion} \\ $$$$\frac{{a}+\mathrm{1}+\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{a}}}{{a}+\mathrm{1}−\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{a}}}=\frac{{a}+\mathrm{1}+\left({a}−\mathrm{1}\right)}{{a}+\mathrm{1}−\left({a}−\mathrm{1}\right)}=\frac{\mathrm{2}{a}}{\mathrm{2}}={a}\:\:\:{correcto} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 01/Jan/23 | ||
$$\frac{\sqrt{{x}}\:+\:\sqrt{{x}\:−\:\mathrm{4}{a}}}{\:\sqrt{{x}}\:−\:\sqrt{{x}\:−\:\mathrm{4}{a}}}\:=\:{a}\:\neq\:\mathrm{0} \\ $$$$\:{find}\:``{x}''\:{in}\:{terms}\:{of}\:``{a}''.\: \\ $$$$\sqrt{{x}}\:+\sqrt{{x}−\mathrm{4}{a}}\:={a}\sqrt{{x}}\:−{a}\sqrt{{x}−\mathrm{4}{a}}\: \\ $$$${a}\sqrt{{x}}\:−\sqrt{{x}}\:=\sqrt{{x}−\mathrm{4}{a}}\:+{a}\sqrt{{x}−\mathrm{4}{a}} \\ $$$$\sqrt{{x}}\:\left({a}−\mathrm{1}\right)=\sqrt{{x}−\mathrm{4}{a}}\:\left({a}+\mathrm{1}\right) \\ $$$$\frac{\sqrt{{x}−\mathrm{4}{a}}\:}{\:\sqrt{{x}}}=\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}} \\ $$$$\frac{{x}−\mathrm{4}{a}}{{x}}=\frac{{a}^{\mathrm{2}} −\mathrm{2}{a}+\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1}} \\ $$$$\frac{{x}−\mathrm{4}{a}}{{x}}−\mathrm{1}=\frac{{a}^{\mathrm{2}} −\mathrm{2}{a}+\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1}}−\mathrm{1} \\ $$$$\frac{−\mathrm{4}{a}}{{x}}=\frac{−\mathrm{4}{a}}{\left({a}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{\left({a}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:\:\:\left[\because{a}\neq\mathrm{0}\right] \\ $$$${x}=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$ | ||