Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 105927 by bemath last updated on 01/Aug/20

((x/(x−2)))^2 +((x/(x+2)))^2 = 2

$$\left(\frac{{x}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{x}}{{x}+\mathrm{2}}\right)^{\mathrm{2}} =\:\mathrm{2}\: \\ $$

Commented by Rasheed.Sindhi last updated on 02/Aug/20

((x/(x−2)))^2 +((x/(x+2)))^2 = 2   ((x/(x−2)))^2 +((x/(x+2)))^2 = ((√2) )^2   Dividing by ((√2))^2 :  ((x/((√2)(x−2))))^2 +((x/((√2)(x+2))))^2 = 1  (x^2 /(2(x−2)^2 ))+(x^2 /(2(x+2)^2 ))−1=0  (x^2 /(2(x−2)^2 ))+((x^2 −2x^2 −8x−8)/(2(x+2)^2 ))=0  (x^2 /((x−2)^2 ))−((x^2 +8x+8)/((x+2)^2 ))=0  x^2 (x+2)^2 −(x−2)^2 (x^2 +8x+8)=0  x^4 +4x^3 +4x^2 −(x^2 −4x+4)(x^2 +8x+8)=0  24x^2 −32=0  x^2 =((32)/(24))=(4/3)  x=±(2/(√3))

$$\left(\frac{{x}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{x}}{{x}+\mathrm{2}}\right)^{\mathrm{2}} =\:\mathrm{2}\: \\ $$$$\left(\frac{{x}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{x}}{{x}+\mathrm{2}}\right)^{\mathrm{2}} =\:\left(\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} \\ $$$${Dividing}\:{by}\:\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} : \\ $$$$\left(\frac{{x}}{\sqrt{\mathrm{2}}\left({x}−\mathrm{2}\right)}\right)^{\mathrm{2}} +\left(\frac{{x}}{\sqrt{\mathrm{2}}\left({x}+\mathrm{2}\right)}\right)^{\mathrm{2}} =\:\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}\left({x}−\mathrm{2}\right)^{\mathrm{2}} }+\frac{{x}^{\mathrm{2}} }{\mathrm{2}\left({x}+\mathrm{2}\right)^{\mathrm{2}} }−\mathrm{1}=\mathrm{0} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}\left({x}−\mathrm{2}\right)^{\mathrm{2}} }+\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} −\mathrm{8}{x}−\mathrm{8}}{\mathrm{2}\left({x}+\mathrm{2}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\frac{{x}^{\mathrm{2}} }{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }−\frac{{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{8}}{\left({x}+\mathrm{2}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$${x}^{\mathrm{2}} \left({x}+\mathrm{2}\right)^{\mathrm{2}} −\left({x}−\mathrm{2}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{8}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} −\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}\right)\left({x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{8}\right)=\mathrm{0} \\ $$$$\mathrm{24}{x}^{\mathrm{2}} −\mathrm{32}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} =\frac{\mathrm{32}}{\mathrm{24}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${x}=\pm\frac{\mathrm{2}}{\sqrt{\mathrm{3}}} \\ $$

Commented by bemath last updated on 02/Aug/20

thank you both

$${thank}\:{you}\:{both}\: \\ $$

Answered by bobhans last updated on 01/Aug/20

Commented by Rasheed.Sindhi last updated on 02/Aug/20

Slightly differentfrom above  ((x/(x−2))−(x/(x+2)))^2 +2((x/(x−2)))((x/(x+2)))=2  (((x^2 +2x−x^2 +2x)/(x−2)))^2 +2((x^2 /(x^2 −4)))=2  (((4x)/(x^2 −4)))^2 +2((x^2 /(x^2 −4)))=2  16x^2 +2(((x^2 (x^2 −4)^2 )/(x^2 −4)))=2(x^2 −4)^2   16x^2 +2x^4 ^(×) −8x^2 =2x^4 ^(×) −16x^2 +32  24x^2 =32  x^2 =((32)/(24))=(4/3)  x=±(2/(√3))

$$\boldsymbol{{Slightly}}\:\boldsymbol{{different}}{from}\:{above} \\ $$$$\left(\frac{{x}}{{x}−\mathrm{2}}−\frac{{x}}{{x}+\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\left(\frac{{x}}{{x}−\mathrm{2}}\right)\left(\frac{{x}}{{x}+\mathrm{2}}\right)=\mathrm{2} \\ $$$$\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}−{x}^{\mathrm{2}} +\mathrm{2}{x}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\left(\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{4}}\right)=\mathrm{2} \\ $$$$\left(\frac{\mathrm{4}{x}}{{x}^{\mathrm{2}} −\mathrm{4}}\right)^{\mathrm{2}} +\mathrm{2}\left(\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{4}}\right)=\mathrm{2} \\ $$$$\mathrm{16}{x}^{\mathrm{2}} +\mathrm{2}\left(\frac{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{4}}\right)=\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{2}} \\ $$$$\mathrm{16}{x}^{\mathrm{2}} +\overset{×} {\mathrm{2}{x}^{\mathrm{4}} }−\mathrm{8}{x}^{\mathrm{2}} =\overset{×} {\mathrm{2}{x}^{\mathrm{4}} }−\mathrm{16}{x}^{\mathrm{2}} +\mathrm{32} \\ $$$$\mathrm{24}{x}^{\mathrm{2}} =\mathrm{32} \\ $$$${x}^{\mathrm{2}} =\frac{\mathrm{32}}{\mathrm{24}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${x}=\pm\frac{\mathrm{2}}{\sqrt{\mathrm{3}}} \\ $$

Answered by Rasheed.Sindhi last updated on 02/Aug/20

((x/(x−2)))^2 +((x/(x+2)))^2 = 2   ((1/((x−2)/x)))^2 +((1/((x+2)/x)))^2 =2  ((1/(1−(2/x))))^2 +((1/(1+(2/x))))^2 =2    ((1/(1−y)))^2 +((1/(1+y)))^2 =2 ; (2/x)=y  (1/((1−y)^2 ))+(1/((1+y)^2 ))=2  (1+y)^2 +(1−y)^2 =2(1−y^2 )^2   2(1+y^2 )=2(1−y^2 )^2   y^4 −2y^2 +1=1+y^2   y^4 −3y^2 =0  y^2 (y^2 −3)=0  y=0 ∨ y=±(√3)  (2/x)=0 (no solution) ∨ (2/x)=±(√3)  x=∞_(wrong approach) ^(×)  ∨ x=±(2/(√3))

$$\left(\frac{{x}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{x}}{{x}+\mathrm{2}}\right)^{\mathrm{2}} =\:\mathrm{2}\: \\ $$$$\left(\frac{\mathrm{1}}{\frac{{x}−\mathrm{2}}{{x}}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\frac{{x}+\mathrm{2}}{{x}}}\right)^{\mathrm{2}} =\mathrm{2} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{2}}{{x}}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{2}}{{x}}}\right)^{\mathrm{2}} =\mathrm{2}\:\: \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{1}−{y}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{1}+{y}}\right)^{\mathrm{2}} =\mathrm{2}\:;\:\frac{\mathrm{2}}{{x}}={y} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}−{y}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{1}+{y}\right)^{\mathrm{2}} }=\mathrm{2} \\ $$$$\left(\mathrm{1}+{y}\right)^{\mathrm{2}} +\left(\mathrm{1}−{y}\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{1}−{y}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\mathrm{2}\left(\mathrm{1}+{y}^{\mathrm{2}} \right)=\mathrm{2}\left(\mathrm{1}−{y}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${y}^{\mathrm{4}} −\mathrm{2}{y}^{\mathrm{2}} +\mathrm{1}=\mathrm{1}+{y}^{\mathrm{2}} \\ $$$${y}^{\mathrm{4}} −\mathrm{3}{y}^{\mathrm{2}} =\mathrm{0} \\ $$$${y}^{\mathrm{2}} \left({y}^{\mathrm{2}} −\mathrm{3}\right)=\mathrm{0} \\ $$$${y}=\mathrm{0}\:\vee\:{y}=\pm\sqrt{\mathrm{3}} \\ $$$$\frac{\mathrm{2}}{{x}}=\mathrm{0}\:\left({no}\:{solution}\right)\:\vee\:\frac{\mathrm{2}}{{x}}=\pm\sqrt{\mathrm{3}} \\ $$$$\underset{{wrong}\:{approach}} {\overset{×} {{x}=\infty}}\:\vee\:{x}=\pm\frac{\mathrm{2}}{\sqrt{\mathrm{3}}} \\ $$

Commented by bobhans last updated on 01/Aug/20

waw....if x= ∞ then ((∞/(∞−2)))^2 +((∞/(∞+2)))^2 =2  it is true sir?

$$\mathrm{waw}....\mathrm{if}\:\mathrm{x}=\:\infty\:\mathrm{then}\:\left(\frac{\infty}{\infty−\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\infty}{\infty+\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{2} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{true}\:\mathrm{sir}?\: \\ $$

Commented by Rasheed.Sindhi last updated on 01/Aug/20

Sir I didn′t try to check the  equation back. Perhaps this is  what you have said “nothing  solution”.I think ′nothing  solution′ is  better.  So ,     (2/x)=0⇒2=0(meaningless)  so no solution.  BTW       (2/x)=0   and also   (2/∞)=0  I concluded that x=∞

$$\mathcal{S}{ir}\:{I}\:{didn}'{t}\:{try}\:{to}\:{check}\:{the} \\ $$$${equation}\:{back}.\:{Perhaps}\:{this}\:{is} \\ $$$${what}\:{you}\:{have}\:{said}\:``{nothing} \\ $$$${solution}''.{I}\:{think}\:'{nothing} \\ $$$${solution}'\:{is}\:\:{better}. \\ $$$${So}\:,\:\:\:\:\:\frac{\mathrm{2}}{{x}}=\mathrm{0}\Rightarrow\mathrm{2}=\mathrm{0}\left({meaningless}\right) \\ $$$${so}\:{no}\:{solution}. \\ $$$${BTW}\: \\ $$$$\:\:\:\:\frac{\mathrm{2}}{{x}}=\mathrm{0}\:\:\:{and}\:{also}\:\:\:\frac{\mathrm{2}}{\infty}=\mathrm{0} \\ $$$${I}\:{concluded}\:{that}\:{x}=\infty \\ $$

Commented by bobhans last updated on 02/Aug/20

ok sir. thank you

$$\mathrm{ok}\:\mathrm{sir}.\:\mathrm{thank}\:\mathrm{you} \\ $$

Answered by Rasheed.Sindhi last updated on 02/Aug/20

((x/(x−2)))^2 +((x/(x+2)))^2 = 2   Dividing by  ((x/(x−2)))^2   1+(((x/(x+2))/(x/(x−2))))^2   =  (2/(((x/(x−2)))^2 ))  1+(((x−2)/(x+2)))^2 =((2(x−2)^2 )/x^2 )  (((x+2)^2 +(x−2)^2 )/((x+2)^2 ))=((2(x−2)^2 )/x^2 )  ((2(x^2 +4))/((x+2)^2 ))=((2(x−2)^2 )/x^2 )  x^2 (x^2 +4)=(x^2 −4)^2   x^4 +4x^2 =x^4 −8x^2 +16  12x^2 =16     x=±(2/(√3))

$$\left(\frac{{x}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{x}}{{x}+\mathrm{2}}\right)^{\mathrm{2}} =\:\mathrm{2}\: \\ $$$${Dividing}\:{by}\:\:\left(\frac{{x}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\mathrm{1}+\left(\frac{\frac{{x}}{{x}+\mathrm{2}}}{\frac{{x}}{{x}−\mathrm{2}}}\right)^{\mathrm{2}} \:\:=\:\:\frac{\mathrm{2}}{\left(\frac{{x}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{1}+\left(\frac{{x}−\mathrm{2}}{{x}+\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{2}\left({x}−\mathrm{2}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$$\frac{\left({x}+\mathrm{2}\right)^{\mathrm{2}} +\left({x}−\mathrm{2}\right)^{\mathrm{2}} }{\left({x}+\mathrm{2}\right)^{\mathrm{2}} }=\frac{\mathrm{2}\left({x}−\mathrm{2}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{\left({x}+\mathrm{2}\right)^{\mathrm{2}} }=\frac{\mathrm{2}\left({x}−\mathrm{2}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$${x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{4}\right)=\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} ={x}^{\mathrm{4}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{16} \\ $$$$\mathrm{12}{x}^{\mathrm{2}} =\mathrm{16} \\ $$$$\:\:\:{x}=\pm\frac{\mathrm{2}}{\sqrt{\mathrm{3}}} \\ $$

Commented by Rasheed.Sindhi last updated on 01/Aug/20

Similarly the question can be solved  also by dividing ((x/(x+2)))^2 to both  sides.

$$\mathcal{S}{imilarly}\:{the}\:{question}\:{can}\:{be}\:{solved} \\ $$$${also}\:{by}\:{dividing}\:\left(\frac{{x}}{{x}+\mathrm{2}}\right)^{\mathrm{2}} {to}\:{both} \\ $$$${sides}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com