Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114577 by Khalmohmmad last updated on 19/Sep/20

x=(π/(30))  ((cos14x×cos6x)/(cos4x))=?

$$\mathrm{x}=\frac{\pi}{\mathrm{30}} \\ $$$$\frac{\mathrm{cos14x}×\mathrm{cos6x}}{\mathrm{cos4x}}=? \\ $$

Commented by bemath last updated on 19/Sep/20

((cos 20x+cos 8x)/(2cos 4x)) = ((cos ((2π)/3)+cos ((4π)/(15)))/(2cos ((2π)/(15))))  = ((−(1/2)+2cos^2 (((2π)/(15)))−1)/(2cos ((2π)/(15))))

$$\frac{\mathrm{cos}\:\mathrm{20}{x}+\mathrm{cos}\:\mathrm{8}{x}}{\mathrm{2cos}\:\mathrm{4}{x}}\:=\:\frac{\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{15}}}{\mathrm{2cos}\:\frac{\mathrm{2}\pi}{\mathrm{15}}} \\ $$$$=\:\frac{−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{15}}\right)−\mathrm{1}}{\mathrm{2cos}\:\frac{\mathrm{2}\pi}{\mathrm{15}}} \\ $$

Commented by MJS_new last updated on 19/Sep/20

we can express this with roots but I haven′t  got the time right now

$$\mathrm{we}\:\mathrm{can}\:\mathrm{express}\:\mathrm{this}\:\mathrm{with}\:\mathrm{roots}\:\mathrm{but}\:\mathrm{I}\:\mathrm{haven}'\mathrm{t} \\ $$$$\mathrm{got}\:\mathrm{the}\:\mathrm{time}\:\mathrm{right}\:\mathrm{now} \\ $$

Commented by MJS_new last updated on 20/Sep/20

I get ((13+7(√5)−(√(390+174(√5))))/8)

$$\mathrm{I}\:\mathrm{get}\:\frac{\mathrm{13}+\mathrm{7}\sqrt{\mathrm{5}}−\sqrt{\mathrm{390}+\mathrm{174}\sqrt{\mathrm{5}}}}{\mathrm{8}} \\ $$

Commented by bobhans last updated on 20/Sep/20

how sir?

$${how}\:{sir}? \\ $$

Commented by MJS_new last updated on 20/Sep/20

(π/(30))=6°  cos 84° = sin 6° =sin (36°−30°)  cos 36° =((1+(√5))/4)  cos 24° =cos (60°−36°)  (or use other sums/differences)  now apply formulas for sin(a±b), cos (a±b)

$$\frac{\pi}{\mathrm{30}}=\mathrm{6}° \\ $$$$\mathrm{cos}\:\mathrm{84}°\:=\:\mathrm{sin}\:\mathrm{6}°\:=\mathrm{sin}\:\left(\mathrm{36}°−\mathrm{30}°\right) \\ $$$$\mathrm{cos}\:\mathrm{36}°\:=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\mathrm{cos}\:\mathrm{24}°\:=\mathrm{cos}\:\left(\mathrm{60}°−\mathrm{36}°\right) \\ $$$$\left(\mathrm{or}\:\mathrm{use}\:\mathrm{other}\:\mathrm{sums}/\mathrm{differences}\right) \\ $$$$\mathrm{now}\:\mathrm{apply}\:\mathrm{formulas}\:\mathrm{for}\:\mathrm{sin}\left({a}\pm{b}\right),\:\mathrm{cos}\:\left({a}\pm{b}\right) \\ $$

Answered by 1549442205PVT last updated on 20/Sep/20

f(x)=((cos14x×cos6x)/(cos4x))=((cos20x+cos8x)/(2cos4x))   f((π/(30)))=((cos20x+2cos^2 4x−1)/(2cos4x))  =((cos((2π)/3)+2cos^2 ((2π)/(15))−1)/(2cos((2π)/(15))))=((−(1/2)+2cos^2 24°−1)/(2cos24°))

$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{cos14x}×\mathrm{cos6x}}{\mathrm{cos4x}}=\frac{\mathrm{cos20x}+\mathrm{cos8x}}{\mathrm{2cos4x}}\: \\ $$$$\mathrm{f}\left(\frac{\pi}{\mathrm{30}}\right)=\frac{\mathrm{cos20x}+\mathrm{2cos}^{\mathrm{2}} \mathrm{4x}−\mathrm{1}}{\mathrm{2cos4x}} \\ $$$$=\frac{\mathrm{cos}\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2cos}^{\mathrm{2}} \frac{\mathrm{2}\pi}{\mathrm{15}}−\mathrm{1}}{\mathrm{2cos}\frac{\mathrm{2}\pi}{\mathrm{15}}}=\frac{−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2cos}^{\mathrm{2}} \mathrm{24}°−\mathrm{1}}{\mathrm{2cos24}°} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com