Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36595 by rahul 19 last updated on 03/Jun/18

∫ ((x dx)/(√(1+x^2 +(√((1+x^2 )^3 ))))) = ?

$$\int\:\frac{{x}\:{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}}\:=\:? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18

t=1+x^2   dt=2xdx  ∫(1/2)×(dt/(√(t+(√(t^3  )))))  (1/2)∫(dt/((√(t+t(√t) ))  ))  (1/2)∫(dt/((√t) ((√(1+(√t) )))))  k^2 =1+(√t)   2kdk=0+(1/(2(√t)))dt  4kdk=(dt/((√t) ))  (1/2)∫((4kdk)/k)  2k+c  2(1+(√t) )+c  2(1+(√(1+x^2 )) ) +c....ans

$${t}=\mathrm{1}+{x}^{\mathrm{2}} \\ $$$${dt}=\mathrm{2}{xdx} \\ $$$$\int\frac{\mathrm{1}}{\mathrm{2}}×\frac{{dt}}{\sqrt{{t}+\sqrt{{t}^{\mathrm{3}} \:}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\sqrt{{t}+{t}\sqrt{{t}}\:}\:\:} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\sqrt{{t}}\:\left(\sqrt{\left.\mathrm{1}+\sqrt{{t}}\:\right)}\right.} \\ $$$${k}^{\mathrm{2}} =\mathrm{1}+\sqrt{{t}}\: \\ $$$$\mathrm{2}{kdk}=\mathrm{0}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{t}}}{dt} \\ $$$$\mathrm{4}{kdk}=\frac{{dt}}{\sqrt{{t}}\:} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{4}{kdk}}{{k}} \\ $$$$\mathrm{2}{k}+{c} \\ $$$$\mathrm{2}\left(\mathrm{1}+\sqrt{{t}}\:\right)+{c} \\ $$$$\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)\:+{c}....{ans} \\ $$

Commented by rahul 19 last updated on 03/Jun/18

Typo in 2nd last line .

Answered by Joel579 last updated on 03/Jun/18

I = ∫ (x/(√((1 + x^2 ) + (1 + x^2 )^(3/2) ))) dx   (u^2  = 1 + x^2   →  2u du = 2x dx)     = ∫ (x/(√(u^2  + u^3 ))) . ((2u du)/(2x))     = ∫ ((u du)/(√(u^2 (1 + u))))      = ∫ (du/(√(1 + u)))     = 2(√(1 + u)) + C     = 2(√(1 + (√(1 + x^2 )))) + C

$${I}\:=\:\int\:\frac{{x}}{\sqrt{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\:+\:\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }}\:{dx}\:\:\:\left({u}^{\mathrm{2}} \:=\:\mathrm{1}\:+\:{x}^{\mathrm{2}} \:\:\rightarrow\:\:\mathrm{2}{u}\:{du}\:=\:\mathrm{2}{x}\:{dx}\right) \\ $$$$\:\:\:=\:\int\:\frac{{x}}{\sqrt{{u}^{\mathrm{2}} \:+\:{u}^{\mathrm{3}} }}\:.\:\frac{\mathrm{2}{u}\:{du}}{\mathrm{2}{x}} \\ $$$$\:\:\:=\:\int\:\frac{{u}\:{du}}{\sqrt{{u}^{\mathrm{2}} \left(\mathrm{1}\:+\:{u}\right)}}\: \\ $$$$\:\:\:=\:\int\:\frac{{du}}{\sqrt{\mathrm{1}\:+\:{u}}} \\ $$$$\:\:\:=\:\mathrm{2}\sqrt{\mathrm{1}\:+\:{u}}\:+\:{C} \\ $$$$\:\:\:=\:\mathrm{2}\sqrt{\mathrm{1}\:+\:\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{2}} }}\:+\:{C} \\ $$

Commented by rahul 19 last updated on 03/Jun/18

thanks sir����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com