Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97417 by MJS last updated on 08/Jun/20

∫(x/(a+sin^2  x))dx=?

$$\int\frac{{x}}{{a}+\mathrm{sin}^{\mathrm{2}} \:{x}}{dx}=? \\ $$

Answered by MJS last updated on 08/Jun/20

just found a path:  sin x =((e^(ix) −e^(−ix) )/(2i))  ⇒  ∫(x/(a+sin^2  x))dx=4∫((xe^(2ix) )/(4ae^(2ix) −(e^(2ix) −1)^2 ))dx=       [t=e^(2ix) −1 → dx=−(i/(2e^(2ix) ))dx]  =∫((ln (t+1))/(t^2 −4at−4a))dt  now we need to factorize and decompose  then substitute to get integrals of the shape  ∫((ln (1−u))/u)du=−Li_2  (u)  I think it′s only hard to type...

$$\mathrm{just}\:\mathrm{found}\:\mathrm{a}\:\mathrm{path}: \\ $$$$\mathrm{sin}\:{x}\:=\frac{\mathrm{e}^{\mathrm{i}{x}} −\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{2i}} \\ $$$$\Rightarrow \\ $$$$\int\frac{{x}}{{a}+\mathrm{sin}^{\mathrm{2}} \:{x}}{dx}=\mathrm{4}\int\frac{{x}\mathrm{e}^{\mathrm{2i}{x}} }{\mathrm{4}{a}\mathrm{e}^{\mathrm{2i}{x}} −\left(\mathrm{e}^{\mathrm{2i}{x}} −\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{e}^{\mathrm{2i}{x}} −\mathrm{1}\:\rightarrow\:{dx}=−\frac{\mathrm{i}}{\mathrm{2e}^{\mathrm{2i}{x}} }{dx}\right] \\ $$$$=\int\frac{\mathrm{ln}\:\left({t}+\mathrm{1}\right)}{{t}^{\mathrm{2}} −\mathrm{4}{at}−\mathrm{4}{a}}{dt} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{factorize}\:\mathrm{and}\:\mathrm{decompose} \\ $$$$\mathrm{then}\:\mathrm{substitute}\:\mathrm{to}\:\mathrm{get}\:\mathrm{integrals}\:\mathrm{of}\:\mathrm{the}\:\mathrm{shape} \\ $$$$\int\frac{\mathrm{ln}\:\left(\mathrm{1}−{u}\right)}{{u}}{du}=−\mathrm{Li}_{\mathrm{2}} \:\left({u}\right) \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:\mathrm{only}\:\mathrm{hard}\:\mathrm{to}\:\mathrm{type}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com