Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 192793 by York12 last updated on 27/May/23

x^4 +x^3 +x^2 +x+1=y^2  where y is positive integer number  then find the positive integal values of (x)  for which that holds

$$\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}}+\mathrm{1}=\boldsymbol{{y}}^{\mathrm{2}} \:\boldsymbol{{where}}\:\boldsymbol{{y}}\:\boldsymbol{{is}}\:\boldsymbol{{positive}}\:\boldsymbol{{integer}}\:\boldsymbol{{number}} \\ $$$$\boldsymbol{{then}}\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{positive}}\:\boldsymbol{{integal}}\:\boldsymbol{{values}}\:\boldsymbol{{of}}\:\left(\boldsymbol{{x}}\right) \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{which}}\:\boldsymbol{{that}}\:\boldsymbol{{holds}} \\ $$

Answered by deleteduser1 last updated on 27/May/23

4(x^4 +x^3 +x^2 +x+1)=(2y)^2   (2x^2 +x)^2 <(2y)^2 =4y^2 <(2x^2 +x+1)^2  when x>3  ⇒4y^2  cannot be a perfect square when x>3  This implies y^2  cannot also be  So,we check x≤3  ⇒(x,y)=(3,11)

$$\mathrm{4}\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)=\left(\mathrm{2}{y}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{2}{x}^{\mathrm{2}} +{x}\right)^{\mathrm{2}} <\left(\mathrm{2}{y}\right)^{\mathrm{2}} =\mathrm{4}{y}^{\mathrm{2}} <\left(\mathrm{2}{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} \:{when}\:{x}>\mathrm{3} \\ $$$$\Rightarrow\mathrm{4}{y}^{\mathrm{2}} \:{cannot}\:{be}\:{a}\:{perfect}\:{square}\:{when}\:{x}>\mathrm{3} \\ $$$${This}\:{implies}\:{y}^{\mathrm{2}} \:{cannot}\:{also}\:{be} \\ $$$${So},{we}\:{check}\:{x}\leqslant\mathrm{3} \\ $$$$\Rightarrow\left({x},{y}\right)=\left(\mathrm{3},\mathrm{11}\right) \\ $$

Commented by York12 last updated on 27/May/23

(x^2 +(x/2))^2 <(x^4 +x^3 +x^2 +x+1)<(x^2 +(x/2)+1)^2   for x ∈Even numbers   then it is impossible  to find a  perfect square number  Between (x^2 +(x/2))^2  & (x^2 +(x/2)+1)^2  becsuse  They are consecuative integers.  Then x ∈ odd numbers → (x^2 +(x/2))^2  & (x^2 +(x/2)+1)^2   are not perfect squares but there one perfect square  between them :  (x^2 +(x/2)+(1/2))^2   and since :  (x^2 +(x/2))^2 <(x^4 +x^3 +x^2 +x+1)<(x^2 +(x/2)+1)^2   ∴ x^4 +x^3 +x^2 +x+1=(x^2 +(x/2)+(1/2))^2   x^4 +x^3 +x^2 +x+1=x^4 +x^3 +x^2 +(x^2 /4)+(x/2)+(1/4)  x^2 −2x−3=0 → x ∈ {3 ,−1}   ∴  x = 3 ( That ′s  it )

$$\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} <\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)<\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${for}\:{x}\:\in{Even}\:{numbers}\: \\ $$$${then}\:{it}\:{is}\:{impossible}\:\:{to}\:{find}\:{a}\:\:{perfect}\:{square}\:{number} \\ $$$${Between}\:\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} \:\&\:\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} \:{becsuse} \\ $$$${They}\:{are}\:{consecuative}\:{integers}. \\ $$$${Then}\:{x}\:\in\:{odd}\:{numbers}\:\rightarrow\:\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} \:\&\:\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${are}\:{not}\:{perfect}\:{squares}\:{but}\:{there}\:{one}\:{perfect}\:{square} \\ $$$${between}\:{them}\:: \\ $$$$\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${and}\:{since}\:: \\ $$$$\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} <\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)<\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\therefore\:{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}=\left({x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}={x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}=\mathrm{0}\:\rightarrow\:{x}\:\in\:\left\{\mathrm{3}\:,−\mathrm{1}\right\}\: \\ $$$$\therefore\:\:{x}\:=\:\mathrm{3}\:\left(\:{That}\:'{s}\:\:{it}\:\right) \\ $$

Answered by MM42 last updated on 28/May/23

x(x+1)(x^2 +1)=(y−1)(y+1)  ∗  the lrft side is always even ,so  the right side   must also be even.  (y−1)(y+1),two even numbers are consecutive  we can arrang the left side of the above relationship of the follows  (x^2 +x)(x^2 +1) or (x+1)(x^3 +x) or x(x^3 +x^2 +x+1)  case 1  ∣x^2 +x−x^2 −1∣=2⇒x=−1 × & x=3 ⇒y=11 ✓  case 2  ∣x^3 +x−x−1∣=2⇒x=−1 & (3)^(1/3)  ×   case 3  ∣x^3 +x^2 +x+1−x∣=2⇒∣x^3 +x^2 +1∣=2 ×(because x>0 )  therefore ,the only answer is ; x=3 & y=11

$${x}\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)=\left({y}−\mathrm{1}\right)\left({y}+\mathrm{1}\right)\:\:\ast \\ $$$${the}\:{lrft}\:{side}\:{is}\:{always}\:{even}\:,{so}\:\:{the}\:{right}\:{side}\: \\ $$$${must}\:{also}\:{be}\:{even}. \\ $$$$\left({y}−\mathrm{1}\right)\left({y}+\mathrm{1}\right),{two}\:{even}\:{numbers}\:{are}\:{consecutive} \\ $$$${we}\:{can}\:{arrang}\:{the}\:{left}\:{side}\:{of}\:{the}\:{above}\:{relationship}\:{of}\:{the}\:{follows} \\ $$$$\left({x}^{\mathrm{2}} +{x}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)\:{or}\:\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{3}} +{x}\right)\:{or}\:{x}\left({x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$$${case}\:\mathrm{1} \\ $$$$\mid{x}^{\mathrm{2}} +{x}−{x}^{\mathrm{2}} −\mathrm{1}\mid=\mathrm{2}\Rightarrow{x}=−\mathrm{1}\:×\:\&\:{x}=\mathrm{3}\:\Rightarrow{y}=\mathrm{11}\:\checkmark \\ $$$${case}\:\mathrm{2} \\ $$$$\mid{x}^{\mathrm{3}} +{x}−{x}−\mathrm{1}\mid=\mathrm{2}\Rightarrow{x}=−\mathrm{1}\:\&\:\sqrt[{\mathrm{3}}]{\mathrm{3}}\:×\: \\ $$$${case}\:\mathrm{3} \\ $$$$\mid{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}−{x}\mid=\mathrm{2}\Rightarrow\mid{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{1}\mid=\mathrm{2}\:×\left({because}\:{x}>\mathrm{0}\:\right) \\ $$$${therefore}\:,{the}\:{only}\:{answer}\:{is}\:;\:{x}=\mathrm{3}\:\&\:{y}=\mathrm{11} \\ $$$$ \\ $$

Commented by York12 last updated on 27/May/23

you can subtract 2 also and you will come up  with the same results

$${you}\:{can}\:{subtract}\:\mathrm{2}\:{also}\:{and}\:{you}\:{will}\:{come}\:{up} \\ $$$${with}\:{the}\:{same}\:{results} \\ $$$$ \\ $$

Commented by MM42 last updated on 27/May/23

thank you

$${thank}\:{you} \\ $$

Commented by York12 last updated on 28/May/23

you are welcome sir

$${you}\:{are}\:{welcome}\:{sir} \\ $$

Commented by MM42 last updated on 28/May/23

I am a retired teacher .and i am   very happy to be member of this community  good luck

$${I}\:{am}\:{a}\:{retired}\:{teacher}\:.{and}\:{i}\:{am}\: \\ $$$${very}\:{happy}\:{to}\:{be}\:{member}\:{of}\:{this}\:{community} \\ $$$${good}\:{luck} \\ $$

Commented by York12 last updated on 28/May/23

Nice to meet you sir   I am a junior high scholar in grade 10   and I am preparing for The IMO

$${Nice}\:{to}\:{meet}\:{you}\:{sir}\: \\ $$$${I}\:{am}\:{a}\:{junior}\:{high}\:{scholar}\:{in}\:{grade}\:\mathrm{10}\: \\ $$$${and}\:{I}\:{am}\:{preparing}\:{for}\:{The}\:{IMO} \\ $$

Commented by MM42 last updated on 28/May/23

i hpoe you have e good future

$${i}\:{hpoe}\:{you}\:{have}\:{e}\:{good}\:{future} \\ $$

Commented by York12 last updated on 28/May/23

thanks really appreciate it

$${thanks}\:{really}\:{appreciate}\:{it} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com