Question Number 214317 by muallimRiyoziyot last updated on 05/Dec/24 | ||
![]() | ||
$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{11}{x}^{\mathrm{2}} +{x}−\mathrm{12}={f}\left({x}\right)×{g}\left({x}\right) \\ $$$${f}\left({x}\right)=?\:\:\:\:{g}\left({x}\right)=? \\ $$ | ||
Answered by A5T last updated on 05/Dec/24 | ||
![]() | ||
$${x}^{\mathrm{4}} −\mathrm{11}{x}^{\mathrm{2}} −\mathrm{12}+{x}^{\mathrm{3}} +{x} \\ $$$$={x}^{\mathrm{4}} −\mathrm{12}{x}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{12}+{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$=\left({x}^{\mathrm{2}} −\mathrm{12}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)+{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}−\mathrm{12}\right) \\ $$$$=\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}+\mathrm{4}\right)\left({x}−\mathrm{3}\right) \\ $$$$\left[{f}\left({x}\right),{g}\left({x}\right)\right]=\left[{x}^{\mathrm{2}} +\mathrm{1},{x}^{\mathrm{2}} +{x}−\mathrm{12}\right]\:{for}\:{instance}. \\ $$ | ||