Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 214317 by muallimRiyoziyot last updated on 05/Dec/24

x^4 +x^3 −11x^2 +x−12=f(x)×g(x)  f(x)=?    g(x)=?

$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{11}{x}^{\mathrm{2}} +{x}−\mathrm{12}={f}\left({x}\right)×{g}\left({x}\right) \\ $$$${f}\left({x}\right)=?\:\:\:\:{g}\left({x}\right)=? \\ $$

Answered by A5T last updated on 05/Dec/24

x^4 −11x^2 −12+x^3 +x  =x^4 −12x^2 +x^2 −12+x(x^2 +1)  =(x^2 −12)(x^2 +1)+x(x^2 +1)=(x^2 +1)(x^2 +x−12)  =(x^2 +1)(x+4)(x−3)  [f(x),g(x)]=[x^2 +1,x^2 +x−12] for instance.

$${x}^{\mathrm{4}} −\mathrm{11}{x}^{\mathrm{2}} −\mathrm{12}+{x}^{\mathrm{3}} +{x} \\ $$$$={x}^{\mathrm{4}} −\mathrm{12}{x}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{12}+{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$=\left({x}^{\mathrm{2}} −\mathrm{12}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)+{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}−\mathrm{12}\right) \\ $$$$=\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}+\mathrm{4}\right)\left({x}−\mathrm{3}\right) \\ $$$$\left[{f}\left({x}\right),{g}\left({x}\right)\right]=\left[{x}^{\mathrm{2}} +\mathrm{1},{x}^{\mathrm{2}} +{x}−\mathrm{12}\right]\:{for}\:{instance}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com