Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 180569 by SAMIRA last updated on 13/Nov/22

(√(x+4)) − (√(x−1)) > (√(4x+5))

$$\sqrt{\boldsymbol{{x}}+\mathrm{4}}\:−\:\sqrt{\boldsymbol{{x}}−\mathrm{1}}\:>\:\sqrt{\mathrm{4}\boldsymbol{{x}}+\mathrm{5}} \\ $$

Commented by Frix last updated on 14/Nov/22

false.  the inequality is defined for x≥1  but for x≥0: (√(x+4))<(√(4x+5))  ⇒  for x≥1 (√(x+4))<(√(4x+5))∧(√(x−1))≥0  ⇒ (√(x+4))−(√(x−1))<(√(4x+5))

$$\mathrm{false}. \\ $$$$\mathrm{the}\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:{x}\geqslant\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{for}\:{x}\geqslant\mathrm{0}:\:\sqrt{{x}+\mathrm{4}}<\sqrt{\mathrm{4}{x}+\mathrm{5}} \\ $$$$\Rightarrow \\ $$$$\mathrm{for}\:{x}\geqslant\mathrm{1}\:\sqrt{{x}+\mathrm{4}}<\sqrt{\mathrm{4}{x}+\mathrm{5}}\wedge\sqrt{{x}−\mathrm{1}}\geqslant\mathrm{0} \\ $$$$\Rightarrow\:\sqrt{{x}+\mathrm{4}}−\sqrt{{x}−\mathrm{1}}<\sqrt{\mathrm{4}{x}+\mathrm{5}} \\ $$

Answered by Acem last updated on 14/Nov/22

f(x)= (√(4x+5))  ; x∈ [−(5/4), +∞[   c_1 (−1.25, 0), c_2 (0, (√5))    g(x)= (√(x+4)) − (√(x−1)) ; x∈ [1, +∞[    c_3 (1, (√5)) ,  lim_(x→+∞)  g(x)= lim_(x→+∞)  ((((√(x+4)) − (√(x−1)))((√(x+4)) + (√(x−1))))/( (√(x+4)) + (√(x−1))))    = lim_(x→+∞)  (5/( (√(x+4)) + (√(x−1)))) =0   ⇒ for x∈ [1, +∞[  : g(x) ∈ [(√5) , 0[                                        & f(x) ∈ [3, +∞[   ⇒ (√(4x+5))  is always bigger than g(x) ∀x∈ [1, +∞[  Then the statement   (√(x+4)) − (√(x−1)) > (√(4x+5))   is wrong or x∈ ∅

$${f}\left({x}\right)=\:\sqrt{\mathrm{4}{x}+\mathrm{5}}\:\:;\:{x}\in\:\left[−\frac{\mathrm{5}}{\mathrm{4}},\:+\infty\left[\:\right.\right. \\ $$$${c}_{\mathrm{1}} \left(−\mathrm{1}.\mathrm{25},\:\mathrm{0}\right),\:{c}_{\mathrm{2}} \left(\mathrm{0},\:\sqrt{\mathrm{5}}\right) \\ $$$$ \\ $$$${g}\left({x}\right)=\:\sqrt{{x}+\mathrm{4}}\:−\:\sqrt{{x}−\mathrm{1}}\:;\:{x}\in\:\left[\mathrm{1},\:+\infty\left[\:\right.\right. \\ $$$$\:{c}_{\mathrm{3}} \left(\mathrm{1},\:\sqrt{\mathrm{5}}\right)\:, \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:{g}\left({x}\right)=\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\left(\sqrt{{x}+\mathrm{4}}\:−\:\sqrt{{x}−\mathrm{1}}\right)\left(\sqrt{{x}+\mathrm{4}}\:+\:\sqrt{{x}−\mathrm{1}}\right)}{\:\sqrt{{x}+\mathrm{4}}\:+\:\sqrt{{x}−\mathrm{1}}} \\ $$$$\:\:=\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{5}}{\:\sqrt{{x}+\mathrm{4}}\:+\:\sqrt{{x}−\mathrm{1}}}\:=\mathrm{0} \\ $$$$\:\Rightarrow\:{for}\:{x}\in\:\left[\mathrm{1},\:+\infty\left[\:\::\:{g}\left({x}\right)\:\in\:\left[\sqrt{\mathrm{5}}\:,\:\mathrm{0}\left[\right.\right.\right.\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\&\:{f}\left({x}\right)\:\in\:\left[\mathrm{3},\:+\infty\left[\right.\right. \\ $$$$\:\Rightarrow\:\sqrt{\mathrm{4}{x}+\mathrm{5}}\:\:{is}\:{always}\:{bigger}\:{than}\:{g}\left({x}\right)\:\forall{x}\in\:\left[\mathrm{1},\:+\infty\left[\right.\right. \\ $$$${Then}\:{the}\:{statement}\: \\ $$$$\sqrt{{x}+\mathrm{4}}\:−\:\sqrt{{x}−\mathrm{1}}\:>\:\sqrt{\mathrm{4}{x}+\mathrm{5}}\:\:\:{is}\:{wrong}\:{or}\:{x}\in\:\emptyset \\ $$$$ \\ $$

Commented by Acem last updated on 13/Nov/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com