Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201941 by ajfour last updated on 15/Dec/23

x^4 −((17)/(18))x^2 +((40)/3)x+((1625)/(144))=0  Find roots. (Two are real and two   are complex)★

$${x}^{\mathrm{4}} −\frac{\mathrm{17}}{\mathrm{18}}{x}^{\mathrm{2}} +\frac{\mathrm{40}}{\mathrm{3}}{x}+\frac{\mathrm{1625}}{\mathrm{144}}=\mathrm{0} \\ $$$${Find}\:{roots}.\:\left({Two}\:{are}\:{real}\:{and}\:{two}\:\right. \\ $$$$\left.{are}\:{complex}\right)\bigstar \\ $$

Commented by Frix last updated on 17/Dec/23

I use the common method.  x^4 +px^2 +qx+r=0  matching with  (x^2 −ux−v)(x^2 +ux−w)=0  leads to  u=(√(s−((2p)/3)))  where s is a solution of  s^3 −(((p^2 +12r)s)/3)−((2p^3 −72pr+27q^2 )/(27))=0  v=−(p/2)−(q/(2u))+(u^2 /2)  w=−(p/2)+(q/(2u))+(u^2 /2)  [if there′s no useable s better approximate]    In the given case  p=−((17)/(18))     q=((40)/3)     r=((1625)/(144))  ⇒  s=((226)/(27))  u=3     v=−((25)/4)     w=−((65)/(36))  ⇒  x=−((13)/6)∨x=−(5/6)∨=(3/2)±2i    How does your new method work?

$$\mathrm{I}\:\mathrm{use}\:\mathrm{the}\:\mathrm{common}\:\mathrm{method}. \\ $$$${x}^{\mathrm{4}} +{px}^{\mathrm{2}} +{qx}+{r}=\mathrm{0} \\ $$$$\mathrm{matching}\:\mathrm{with} \\ $$$$\left({x}^{\mathrm{2}} −{ux}−{v}\right)\left({x}^{\mathrm{2}} +{ux}−{w}\right)=\mathrm{0} \\ $$$$\mathrm{leads}\:\mathrm{to} \\ $$$${u}=\sqrt{{s}−\frac{\mathrm{2}{p}}{\mathrm{3}}} \\ $$$$\mathrm{where}\:{s}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{of} \\ $$$${s}^{\mathrm{3}} −\frac{\left({p}^{\mathrm{2}} +\mathrm{12}{r}\right){s}}{\mathrm{3}}−\frac{\mathrm{2}{p}^{\mathrm{3}} −\mathrm{72}{pr}+\mathrm{27}{q}^{\mathrm{2}} }{\mathrm{27}}=\mathrm{0} \\ $$$${v}=−\frac{{p}}{\mathrm{2}}−\frac{{q}}{\mathrm{2}{u}}+\frac{{u}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${w}=−\frac{{p}}{\mathrm{2}}+\frac{{q}}{\mathrm{2}{u}}+\frac{{u}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left[\mathrm{if}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{useable}\:{s}\:\mathrm{better}\:\mathrm{approximate}\right] \\ $$$$ \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{given}\:\mathrm{case} \\ $$$${p}=−\frac{\mathrm{17}}{\mathrm{18}}\:\:\:\:\:{q}=\frac{\mathrm{40}}{\mathrm{3}}\:\:\:\:\:{r}=\frac{\mathrm{1625}}{\mathrm{144}} \\ $$$$\Rightarrow \\ $$$${s}=\frac{\mathrm{226}}{\mathrm{27}} \\ $$$${u}=\mathrm{3}\:\:\:\:\:{v}=−\frac{\mathrm{25}}{\mathrm{4}}\:\:\:\:\:{w}=−\frac{\mathrm{65}}{\mathrm{36}} \\ $$$$\Rightarrow \\ $$$${x}=−\frac{\mathrm{13}}{\mathrm{6}}\vee{x}=−\frac{\mathrm{5}}{\mathrm{6}}\vee=\frac{\mathrm{3}}{\mathrm{2}}\pm\mathrm{2i} \\ $$$$ \\ $$$$\mathrm{How}\:\mathrm{does}\:\mathrm{your}\:\mathrm{new}\:\mathrm{method}\:\mathrm{work}? \\ $$

Answered by ajfour last updated on 17/Dec/23

x^4 +bx^2 +cx+d=0  (2x^2 +px+h)(2x^2 −px+k)=3x^2 (x^2 +m)  ⇒  p^2 {(p^2 +b)^2 −4d}=c^2     say   p^2 =p_i ^2     (if three roots  i=0,1,2)       or   p^2 =p_0 ^2    (if one root real)  p^2 +m=−b  x=((±p_0 )/2)±(√(−((c/(±2p_0 ))+(p^2 /4)+(b/2))))  All four roots obtained from any  p=±p_i   .  This example    p_0 =±3  (x∓(3/2))^2 =−[(1/(±6))(((40)/3))+(9/4)−((17)/(36))]   (x∓(3/2))^2 =(4/9), −4  This method really never fails.  because at least one p_i ^2 >0 always. As  p^2 {(p^2 +b)^2 −4d}−c^2 =0  Its been 2 nights, i developed this.

$${x}^{\mathrm{4}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$$\left(\mathrm{2}{x}^{\mathrm{2}} +{px}+{h}\right)\left(\mathrm{2}{x}^{\mathrm{2}} −{px}+{k}\right)=\mathrm{3}{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +{m}\right) \\ $$$$\Rightarrow\:\:{p}^{\mathrm{2}} \left\{\left({p}^{\mathrm{2}} +{b}\right)^{\mathrm{2}} −\mathrm{4}{d}\right\}={c}^{\mathrm{2}} \\ $$$$\:\:{say}\:\:\:{p}^{\mathrm{2}} ={p}_{{i}} ^{\mathrm{2}} \:\:\:\:\left({if}\:{three}\:{roots}\:\:{i}=\mathrm{0},\mathrm{1},\mathrm{2}\right) \\ $$$$\:\:\:\:\:{or}\:\:\:{p}^{\mathrm{2}} ={p}_{\mathrm{0}} ^{\mathrm{2}} \:\:\:\left({if}\:{one}\:{root}\:{real}\right) \\ $$$${p}^{\mathrm{2}} +{m}=−{b} \\ $$$${x}=\frac{\pm{p}_{\mathrm{0}} }{\mathrm{2}}\pm\sqrt{−\left(\frac{{c}}{\pm\mathrm{2}{p}_{\mathrm{0}} }+\frac{{p}^{\mathrm{2}} }{\mathrm{4}}+\frac{{b}}{\mathrm{2}}\right)} \\ $$$${All}\:{four}\:{roots}\:{obtained}\:{from}\:{any} \\ $$$${p}=\pm{p}_{{i}} \:\:. \\ $$$${This}\:{example}\:\:\:\:{p}_{\mathrm{0}} =\pm\mathrm{3} \\ $$$$\left({x}\mp\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} =−\left[\frac{\mathrm{1}}{\pm\mathrm{6}}\left(\frac{\mathrm{40}}{\mathrm{3}}\right)+\frac{\mathrm{9}}{\mathrm{4}}−\frac{\mathrm{17}}{\mathrm{36}}\right]\: \\ $$$$\left({x}\mp\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{4}}{\mathrm{9}},\:−\mathrm{4} \\ $$$${This}\:{method}\:{really}\:{never}\:{fails}. \\ $$$${because}\:{at}\:{least}\:{one}\:{p}_{{i}} ^{\mathrm{2}} >\mathrm{0}\:{always}.\:{As} \\ $$$${p}^{\mathrm{2}} \left\{\left({p}^{\mathrm{2}} +{b}\right)^{\mathrm{2}} −\mathrm{4}{d}\right\}−{c}^{\mathrm{2}} =\mathrm{0} \\ $$$${Its}\:{been}\:\mathrm{2}\:{nights},\:{i}\:{developed}\:{this}. \\ $$

Commented by Frix last updated on 17/Dec/23

From my version: s^3 −(p^2 +12r)s/3−(2p^3 −72pr+27q^2)/27=0 u=√(s−2p/3) u^6 +2pu^4 +(p^2 −4r)u^2 −q^2 =0 From your version: p^2 ((p^2 +b)^2 −4d)−c^2 =0 p^6 +2bp^4 +(b^2 −4d)p^2 −c^2 =0 ...so it′s basically the same... ������

Answered by ajfour last updated on 17/Dec/23

Commented by ajfour last updated on 17/Dec/23

Shouldn't i be awarded for this?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com