Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 191640 by vishal1234 last updated on 28/Apr/23

x^3 −1 = (x−1) (x^2 +x+1)  ⇒ x = 1 and x = ((−1±(√3) i)/2)  ⇒ w = −(1/2) + (((√3)i )/2) and w^2  = −(1/2) − ((√3)/2) i  ⇒ w^3  = 1  similarly x^3  + 1= 0  ⇒ x = −1 and x =−w^2  and x = −w

$${x}^{\mathrm{3}} −\mathrm{1}\:=\:\left({x}−\mathrm{1}\right)\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{1}\:{and}\:{x}\:=\:\frac{−\mathrm{1}\pm\sqrt{\mathrm{3}}\:{i}}{\mathrm{2}} \\ $$$$\Rightarrow\:{w}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}{i}\:}{\mathrm{2}}\:{and}\:{w}^{\mathrm{2}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{i} \\ $$$$\Rightarrow\:{w}^{\mathrm{3}} \:=\:\mathrm{1} \\ $$$${similarly}\:{x}^{\mathrm{3}} \:+\:\mathrm{1}=\:\mathrm{0} \\ $$$$\Rightarrow\:{x}\:=\:−\mathrm{1}\:{and}\:{x}\:=−{w}^{\mathrm{2}} \:{and}\:{x}\:=\:−{w} \\ $$

Commented by a.lgnaoui last updated on 28/Apr/23

w=−(1/2)+((√3)/2)i=j      (j=e^(i((2𝛑)/3)) )

$$\mathrm{w}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}=\boldsymbol{\mathrm{j}}\:\:\:\:\:\:\left(\boldsymbol{\mathrm{j}}=\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{i}}\frac{\mathrm{2}\boldsymbol{\pi}}{\mathrm{3}}} \right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com