Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 209694 by Frix last updated on 18/Jul/24

x^2 +xy+y^2 =α^2   y^2 +yz+z^2 =β^2   z^2 +zx+x^2 =α^2 +β^2   Find x+y+z for x, y, z ∈R^+

$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\alpha^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\beta^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \\ $$$$\mathrm{Find}\:{x}+{y}+{z}\:\mathrm{for}\:{x},\:{y},\:{z}\:\in\mathbb{R}^{+} \\ $$

Answered by mr W last updated on 18/Jul/24

Commented by mr W last updated on 18/Jul/24

(1/2)(xy+yz+zx)×((√3)/2)=((αβ)/2)  ⇒xy+yz+zx=((2αβ)/( (√3)))  2(x^2 +y^2 +z^2 )+xy+yz+zx=2(α^2 +β^2 )  (x+y+z)^2 −(3/2)(xy+yz+zx)=α^2 +β^2   (x+y+z)^2 =α^2 +β^2 +(√3)αβ  ⇒x+y+z=(√(α^2 +β^2 +(√3)αβ))

$$\frac{\mathrm{1}}{\mathrm{2}}\left({xy}+{yz}+{zx}\right)×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\alpha\beta}{\mathrm{2}} \\ $$$$\Rightarrow{xy}+{yz}+{zx}=\frac{\mathrm{2}\alpha\beta}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)+{xy}+{yz}+{zx}=\mathrm{2}\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right) \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{2}}\left({xy}+{yz}+{zx}\right)=\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\sqrt{\mathrm{3}}\alpha\beta \\ $$$$\Rightarrow{x}+{y}+{z}=\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\sqrt{\mathrm{3}}\alpha\beta} \\ $$

Commented by Frix last updated on 18/Jul/24

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com