Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 138673 by KwesiDerek last updated on 16/Apr/21

x^2 −x=72  y^2 −y=30  x+y=4  x−y=?

$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}=\mathrm{72} \\ $$$$\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}=\mathrm{30} \\ $$$$\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}=\mathrm{4} \\ $$$$\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}=? \\ $$

Commented by Rasheed.Sindhi last updated on 16/Apr/21

^• x^2 −x−72=0  (x−9)(x+8)=0  x=9 ∨ x=−8  ^• y^2 −y−30=0    (y−6)(y+5)=0     y=6 ∨ y=−5  ^• x+y=4    9+(−5)=4  (x,y)=(9,−5) satisfying all the three  equations.  x−y=9−(−5)=14

$$\:^{\bullet} {x}^{\mathrm{2}} −{x}−\mathrm{72}=\mathrm{0} \\ $$$$\left({x}−\mathrm{9}\right)\left({x}+\mathrm{8}\right)=\mathrm{0} \\ $$$${x}=\mathrm{9}\:\vee\:{x}=−\mathrm{8} \\ $$$$\:^{\bullet} {y}^{\mathrm{2}} −{y}−\mathrm{30}=\mathrm{0} \\ $$$$\:\:\left({y}−\mathrm{6}\right)\left({y}+\mathrm{5}\right)=\mathrm{0} \\ $$$$\:\:\:{y}=\mathrm{6}\:\vee\:{y}=−\mathrm{5} \\ $$$$\:^{\bullet} {x}+{y}=\mathrm{4} \\ $$$$\:\:\mathrm{9}+\left(−\mathrm{5}\right)=\mathrm{4} \\ $$$$\left({x},{y}\right)=\left(\mathrm{9},−\mathrm{5}\right)\:{satisfying}\:{all}\:{the}\:{three} \\ $$$${equations}. \\ $$$${x}−{y}=\mathrm{9}−\left(−\mathrm{5}\right)=\mathrm{14} \\ $$

Commented by Rasheed.Sindhi last updated on 16/Apr/21

So I think nimnim is right here.

$$\mathcal{S}{o}\:{I}\:{think}\:{nimnim}\:{is}\:{right}\:{here}. \\ $$

Commented by MJS_new last updated on 17/Apr/21

sorry for my mistake. I′m the Typo Master!!!

$$\mathrm{sorry}\:\mathrm{for}\:\mathrm{my}\:\mathrm{mistake}.\:\mathrm{I}'\mathrm{m}\:\mathrm{the}\:\mathrm{Typo}\:\mathrm{Master}!!! \\ $$

Answered by MJS_new last updated on 16/Apr/21

x=−9∨x=8  y=−5∨y=6  ⇒ x+y≠4

$${x}=−\mathrm{9}\vee{x}=\mathrm{8} \\ $$$${y}=−\mathrm{5}\vee{y}=\mathrm{6} \\ $$$$\Rightarrow\:{x}+{y}\neq\mathrm{4} \\ $$

Commented by Rasheed.Sindhi last updated on 17/Apr/21

Typo sir x=+9 ∨ x=−8

$${Typo}\:{sir}\:{x}=+\mathrm{9}\:\vee\:{x}=−\mathrm{8} \\ $$

Answered by nimnim last updated on 16/Apr/21

x^2 −x=72......(i)  y^2 −y=30.......(ii)  x+y=4..........(iii)  (i)+(ii)⇒x^2 +y^2 −x−y=102                   ⇒(x+y)^2 −2xy−(x+y)=102                   ⇒(4)^2 −2xy−4=102    {using (iii)}                   ⇒xy=−45  (iii)→(x+y)^2 =4^2      ⇒(x−y)^2 +4xy=16     ⇒(x−y)^2 +4(−45)=16     ⇒(x−y)^2 =16+180     ⇒(x−y)=±(√(196))=±14     ⇒(x−y)=14 or (x−y)=−14 (neglected)  ∴ (x−y)=14★

$${x}^{\mathrm{2}} −{x}=\mathrm{72}......\left({i}\right) \\ $$$${y}^{\mathrm{2}} −{y}=\mathrm{30}.......\left({ii}\right) \\ $$$${x}+{y}=\mathrm{4}..........\left({iii}\right) \\ $$$$\left({i}\right)+\left({ii}\right)\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{x}−{y}=\mathrm{102} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}{xy}−\left({x}+{y}\right)=\mathrm{102} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\left(\mathrm{4}\right)^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{4}=\mathrm{102}\:\:\:\:\left\{{using}\:\left({iii}\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow{xy}=−\mathrm{45} \\ $$$$\left({iii}\right)\rightarrow\left({x}+{y}\right)^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} \\ $$$$\:\:\:\Rightarrow\left({x}−{y}\right)^{\mathrm{2}} +\mathrm{4}{xy}=\mathrm{16} \\ $$$$\:\:\:\Rightarrow\left({x}−{y}\right)^{\mathrm{2}} +\mathrm{4}\left(−\mathrm{45}\right)=\mathrm{16} \\ $$$$\:\:\:\Rightarrow\left({x}−{y}\right)^{\mathrm{2}} =\mathrm{16}+\mathrm{180} \\ $$$$\:\:\:\Rightarrow\left({x}−{y}\right)=\pm\sqrt{\mathrm{196}}=\pm\mathrm{14} \\ $$$$\:\:\:\Rightarrow\left({x}−{y}\right)=\mathrm{14}\:{or}\:\left({x}−{y}\right)=−\mathrm{14}\:\left({neglected}\right) \\ $$$$\therefore\:\left({x}−{y}\right)=\mathrm{14}\bigstar \\ $$

Commented by MJS_new last updated on 16/Apr/21

this method is wrong. a pair (x, y) is a solution of  the system  { ((x^2 −x=30)),((y^2 −y=72)),((x+y=4)) :} only if it solves each  of the equations of this system.

$$\mathrm{this}\:\mathrm{method}\:\mathrm{is}\:\mathrm{wrong}.\:\mathrm{a}\:\mathrm{pair}\:\left({x},\:{y}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{system}\:\begin{cases}{{x}^{\mathrm{2}} −{x}=\mathrm{30}}\\{{y}^{\mathrm{2}} −{y}=\mathrm{72}}\\{{x}+{y}=\mathrm{4}}\end{cases}\:\mathrm{only}\:\mathrm{if}\:\mathrm{it}\:\mathrm{solves}\:\mathrm{each} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{this}\:\mathrm{system}. \\ $$

Commented by nimnim last updated on 16/Apr/21

I think x=9 and y=−5

$${I}\:{think}\:{x}=\mathrm{9}\:{and}\:{y}=−\mathrm{5} \\ $$

Commented by MJS_new last updated on 16/Apr/21

 your method:  (1) 25+5=17  (2) 49+7=69    (1)+(2) 25+49+5+7=86 true

$$\:\mathrm{your}\:\mathrm{method}: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{25}+\mathrm{5}=\mathrm{17} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{49}+\mathrm{7}=\mathrm{69} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\:\mathrm{25}+\mathrm{49}+\mathrm{5}+\mathrm{7}=\mathrm{86}\:\mathrm{true} \\ $$

Commented by MJS_new last updated on 16/Apr/21

if x=9 the first equation is wrong  if y=−5 the second equation is wrong

$$\mathrm{if}\:{x}=\mathrm{9}\:\mathrm{the}\:\mathrm{first}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{wrong} \\ $$$$\mathrm{if}\:{y}=−\mathrm{5}\:\mathrm{the}\:\mathrm{second}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{wrong} \\ $$

Commented by nimnim last updated on 16/Apr/21

If x=9, 1st equation=9^2 −9=81−9=72 true  If y=−5, 2nd equation=(−5)^2 −(−5)=25+5=30 true  3rd equation=9+(−5)=4 true    But if you say so, it might be wrong. I am   just a beginner, reading in 8 standard. I dont  know much about maths like you do.  Thanks for your help, Sir.

$${If}\:{x}=\mathrm{9},\:\mathrm{1}{st}\:{equation}=\mathrm{9}^{\mathrm{2}} −\mathrm{9}=\mathrm{81}−\mathrm{9}=\mathrm{72}\:{true} \\ $$$${If}\:{y}=−\mathrm{5},\:\mathrm{2}{nd}\:{equation}=\left(−\mathrm{5}\right)^{\mathrm{2}} −\left(−\mathrm{5}\right)=\mathrm{25}+\mathrm{5}=\mathrm{30}\:{true} \\ $$$$\mathrm{3}{rd}\:{equation}=\mathrm{9}+\left(−\mathrm{5}\right)=\mathrm{4}\:{true} \\ $$$$ \\ $$$${But}\:{if}\:{you}\:{say}\:{so},\:{it}\:{might}\:{be}\:{wrong}.\:{I}\:{am}\: \\ $$$${just}\:{a}\:{beginner},\:{reading}\:{in}\:\mathrm{8}\:{standard}.\:{I}\:{dont} \\ $$$${know}\:{much}\:{about}\:{maths}\:{like}\:{you}\:{do}. \\ $$$${Thanks}\:{for}\:{your}\:{help},\:{Sir}. \\ $$$$\:\: \\ $$

Answered by ajfour last updated on 16/Apr/21

x+y=4  x−y=2s  x=s+2  y=2−s  s^2 +4s+4−s−2=72  s^2 +3s−70=0   ...(i)  &  4−4s+s^2 −2+s=30  s^2 −3s−28=0   ..(ii)  from (i)  s=((−3±(√(9+280)))/2)  s=7, −10  from (ii)  s=((3±(√(9+112)))/2)  s=7, −4  Hence  s=7  x−y=2s=14

$${x}+{y}=\mathrm{4} \\ $$$${x}−{y}=\mathrm{2}{s} \\ $$$${x}={s}+\mathrm{2} \\ $$$${y}=\mathrm{2}−{s} \\ $$$${s}^{\mathrm{2}} +\mathrm{4}{s}+\mathrm{4}−{s}−\mathrm{2}=\mathrm{72} \\ $$$${s}^{\mathrm{2}} +\mathrm{3}{s}−\mathrm{70}=\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\&\:\:\mathrm{4}−\mathrm{4}{s}+{s}^{\mathrm{2}} −\mathrm{2}+{s}=\mathrm{30} \\ $$$${s}^{\mathrm{2}} −\mathrm{3}{s}−\mathrm{28}=\mathrm{0}\:\:\:..\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:\:{s}=\frac{−\mathrm{3}\pm\sqrt{\mathrm{9}+\mathrm{280}}}{\mathrm{2}} \\ $$$${s}=\mathrm{7},\:−\mathrm{10} \\ $$$${from}\:\left({ii}\right) \\ $$$${s}=\frac{\mathrm{3}\pm\sqrt{\mathrm{9}+\mathrm{112}}}{\mathrm{2}} \\ $$$${s}=\mathrm{7},\:−\mathrm{4} \\ $$$${Hence} \\ $$$${s}=\mathrm{7} \\ $$$${x}−{y}=\mathrm{2}{s}=\mathrm{14} \\ $$

Answered by Rasheed.Sindhi last updated on 16/Apr/21

x^2 −x=72  ∧ y^2 −y=30 ∧ x+y=4  y=4−x :  y^2 −y=30⇒(4−x)^2 −(4−x)=30     16−8x+x^2 −4+x=30       x^2 −7x−18=0       ( x−9)(x+2)=0        x=9 ∨ x=−2   x=9 also satisfy x^2 −x=72  Hence x=9  y=4−x=4−9=−5  (x,y)=(9,−5)  x−y=9−(−5)=14

$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}=\mathrm{72}\:\:\wedge\:\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}=\mathrm{30}\:\wedge\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}=\mathrm{4} \\ $$$${y}=\mathrm{4}−{x}\:: \\ $$$${y}^{\mathrm{2}} −{y}=\mathrm{30}\Rightarrow\left(\mathrm{4}−{x}\right)^{\mathrm{2}} −\left(\mathrm{4}−{x}\right)=\mathrm{30} \\ $$$$\:\:\:\mathrm{16}−\mathrm{8}{x}+{x}^{\mathrm{2}} −\mathrm{4}+{x}=\mathrm{30} \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} −\mathrm{7}{x}−\mathrm{18}=\mathrm{0} \\ $$$$\:\:\:\:\:\left(\:{x}−\mathrm{9}\right)\left({x}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:{x}=\mathrm{9}\:\vee\:{x}=−\mathrm{2}\: \\ $$$${x}=\mathrm{9}\:{also}\:{satisfy}\:{x}^{\mathrm{2}} −{x}=\mathrm{72} \\ $$$${Hence}\:{x}=\mathrm{9} \\ $$$${y}=\mathrm{4}−{x}=\mathrm{4}−\mathrm{9}=−\mathrm{5} \\ $$$$\left({x},{y}\right)=\left(\mathrm{9},−\mathrm{5}\right) \\ $$$${x}−{y}=\mathrm{9}−\left(−\mathrm{5}\right)=\mathrm{14} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com