Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 187091 by Humble last updated on 13/Feb/23

  ⌊x^2 ⌋  −  ⌊x⌋^2  =100  x∈R  min(x)=?

$$ \\ $$$$\lfloor{x}^{\mathrm{2}} \rfloor\:\:−\:\:\lfloor{x}\rfloor^{\mathrm{2}} \:=\mathrm{100} \\ $$$${x}\in\mathbb{R} \\ $$$${min}\left({x}\right)=? \\ $$

Answered by MJS_new last updated on 13/Feb/23

x=n+f; n∈Z∧0≤f<1  ⌊x^2 ⌋−⌊x⌋^2 =100  ⌊n^2 +2nf+f^2 ⌋−⌊n+f⌋^2 =100  n^2 +⌊2nf+f^2 ⌋−n^2 =100  ⌊2nf+f^2 ⌋=100  2nf+f^2 −100=0∧0≤f<1∧n∈Z  ⇒ f=−n+(√(n^2 +100))  0≤−n+(√(n^2 +100))<1  ⇒ n≥50  n=50 ⇒ f=−50+10(√(26))  x=n+f=10(√(26))

$${x}={n}+{f};\:{n}\in\mathbb{Z}\wedge\mathrm{0}\leqslant{f}<\mathrm{1} \\ $$$$\lfloor{x}^{\mathrm{2}} \rfloor−\lfloor{x}\rfloor^{\mathrm{2}} =\mathrm{100} \\ $$$$\lfloor{n}^{\mathrm{2}} +\mathrm{2}{nf}+{f}^{\mathrm{2}} \rfloor−\lfloor{n}+{f}\rfloor^{\mathrm{2}} =\mathrm{100} \\ $$$${n}^{\mathrm{2}} +\lfloor\mathrm{2}{nf}+{f}^{\mathrm{2}} \rfloor−{n}^{\mathrm{2}} =\mathrm{100} \\ $$$$\lfloor\mathrm{2}{nf}+{f}^{\mathrm{2}} \rfloor=\mathrm{100} \\ $$$$\mathrm{2}{nf}+{f}^{\mathrm{2}} −\mathrm{100}=\mathrm{0}\wedge\mathrm{0}\leqslant{f}<\mathrm{1}\wedge{n}\in\mathbb{Z} \\ $$$$\Rightarrow\:{f}=−{n}+\sqrt{{n}^{\mathrm{2}} +\mathrm{100}} \\ $$$$\mathrm{0}\leqslant−{n}+\sqrt{{n}^{\mathrm{2}} +\mathrm{100}}<\mathrm{1} \\ $$$$\Rightarrow\:{n}\geqslant\mathrm{50} \\ $$$${n}=\mathrm{50}\:\Rightarrow\:{f}=−\mathrm{50}+\mathrm{10}\sqrt{\mathrm{26}} \\ $$$${x}={n}+{f}=\mathrm{10}\sqrt{\mathrm{26}} \\ $$

Commented by Humble last updated on 13/Feb/23

thank you, sir

$${thank}\:{you},\:{sir} \\ $$

Commented by MJS_new last updated on 13/Feb/23

you′re welcome

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$

Answered by mr W last updated on 13/Feb/23

x=n+f  ⌊n^2 +2nf+f^2 ⌋−⌊n+f⌋^2 =100  n^2 +⌊2nf+f^2 ⌋−n^2 =100  100=⌊2nf+f^2 ⌋<2n+1 ⇒n>((99)/2) ⇒n≥50  100≤2nf+f^2 <101  f^2 +2nf−100≥0  ⇒f≥−n+(√(n^2 +100))  f^2 +2nf−101<0  ⇒f<−n+(√(n^2 +101))  general solution:  (√(n^2 +100))≤x<(√(n^2 +101))  (n≥50)  min(x)=(√(50^2 +100))=10(√(26))

$${x}={n}+{f} \\ $$$$\lfloor{n}^{\mathrm{2}} +\mathrm{2}{nf}+{f}^{\mathrm{2}} \rfloor−\lfloor{n}+{f}\rfloor^{\mathrm{2}} =\mathrm{100} \\ $$$${n}^{\mathrm{2}} +\lfloor\mathrm{2}{nf}+{f}^{\mathrm{2}} \rfloor−{n}^{\mathrm{2}} =\mathrm{100} \\ $$$$\mathrm{100}=\lfloor\mathrm{2}{nf}+{f}^{\mathrm{2}} \rfloor<\mathrm{2}{n}+\mathrm{1}\:\Rightarrow{n}>\frac{\mathrm{99}}{\mathrm{2}}\:\Rightarrow{n}\geqslant\mathrm{50} \\ $$$$\mathrm{100}\leqslant\mathrm{2}{nf}+{f}^{\mathrm{2}} <\mathrm{101} \\ $$$${f}^{\mathrm{2}} +\mathrm{2}{nf}−\mathrm{100}\geqslant\mathrm{0} \\ $$$$\Rightarrow{f}\geqslant−{n}+\sqrt{{n}^{\mathrm{2}} +\mathrm{100}} \\ $$$${f}^{\mathrm{2}} +\mathrm{2}{nf}−\mathrm{101}<\mathrm{0} \\ $$$$\Rightarrow{f}<−{n}+\sqrt{{n}^{\mathrm{2}} +\mathrm{101}} \\ $$$${general}\:{solution}: \\ $$$$\sqrt{{n}^{\mathrm{2}} +\mathrm{100}}\leqslant{x}<\sqrt{{n}^{\mathrm{2}} +\mathrm{101}} \\ $$$$\left({n}\geqslant\mathrm{50}\right) \\ $$$${min}\left({x}\right)=\sqrt{\mathrm{50}^{\mathrm{2}} +\mathrm{100}}=\mathrm{10}\sqrt{\mathrm{26}} \\ $$

Commented by Humble last updated on 13/Feb/23

thank you, Boss.

$${thank}\:{you},\:{Boss}. \\ $$

Commented by mr W last updated on 13/Feb/23

you too!

$${you}\:{too}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com