Question Number 218099 by Rasheed.Sindhi last updated on 29/Mar/25 | ||
![]() | ||
$${x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\:,\:{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=? \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 29/Mar/25 | ||
![]() | ||
$$\mathrm{Another}\:\mathrm{way} \\ $$$$\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}{x}^{\mathrm{3}} +\mathrm{2}{x}+\mathrm{2}{x}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}{x}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}{x}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$ | ||
Answered by profcedricjunior last updated on 29/Mar/25 | ||
![]() | ||
$$\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}}+\mathrm{1}=\mathrm{0}=>\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}=−\boldsymbol{{x}} \\ $$$$=>\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} =\left(−\boldsymbol{{x}}\right)^{\mathrm{2}} \\ $$$$=>\boldsymbol{{x}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}=\boldsymbol{{x}}^{\mathrm{2}} =>\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$ | ||
Answered by ArshadS last updated on 29/Mar/25 | ||
![]() | ||
$${x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\:,\:{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=? \\ $$$$\bullet{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\Rightarrow{x}^{\mathrm{2}} +\mathrm{1}=−{x} \\ $$$$\bullet{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}={x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}−{x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(−{x}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} =\mathrm{0} \\ $$ | ||
Answered by ArshadS last updated on 30/Mar/25 | ||
![]() | ||
$${x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\:,\:{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=? \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{3}} −\mathrm{1}=\mathrm{0} \\ $$$${x}=\mathrm{1},\omega,\omega^{\mathrm{2}} \\ $$$$\because{x}=\mathrm{1}\:{is}\:{root}\:{of}\:{x}−\mathrm{1} \\ $$$$\therefore\:\omega,\omega^{\mathrm{2}} {are}\:{the}\:{roots}\:{of}\:{given}\:{equation}. \\ $$$${Case}\mathrm{1}:\:{x}=\omega \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=\omega^{\mathrm{4}} +\omega^{\mathrm{2}} +\mathrm{1} \\ $$$$=\omega^{\mathrm{3}} .\omega+\omega^{\mathrm{2}} +\mathrm{1}=\omega^{\mathrm{2}} +\omega+\mathrm{1}=\mathrm{0} \\ $$$${Case}\mathrm{2}:\:{x}=\omega^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=\left(\omega^{\mathrm{2}} \right)^{\mathrm{4}} +\left(\omega^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{1} \\ $$$$=\omega^{\mathrm{8}} +\omega^{\mathrm{4}} +\mathrm{1}=\left(\omega^{\mathrm{3}} \right)^{\mathrm{2}} .\omega^{\mathrm{2}} +\omega^{\mathrm{3}} .\omega+\mathrm{1} \\ $$$$=\omega^{\mathrm{2}} +\omega+\mathrm{1}=\mathrm{0} \\ $$ | ||
Answered by MATHEMATICSAM last updated on 30/Mar/25 | ||
![]() | ||
$${x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\:,\:{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=? \\ $$$${x}^{\mathrm{4}} \:+\:{x}^{\mathrm{2}} \:+\:\mathrm{1} \\ $$$$=\:{x}^{\mathrm{4}} \:+\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{1}\:−\:{x}^{\mathrm{2}} \\ $$$$=\:\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)^{\mathrm{2}} \:−\:{x}^{\mathrm{2}} \\ $$$$=\:\left({x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:−\:{x}\:+\:\mathrm{1}\right) \\ $$$$=\:\mathrm{0}\:×\:\left({x}^{\mathrm{2}} \:−{x}\:+\:\mathrm{1}\right) \\ $$$$=\:\mathrm{0} \\ $$ | ||