Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128608 by john_santu last updated on 08/Jan/21

∫ x^2 .tan^(−1) ((x/2))dx=?

$$\int\:\mathrm{x}^{\mathrm{2}} .\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{dx}=? \\ $$

Answered by liberty last updated on 08/Jan/21

L = (1/3)x^3 .tan^(−1) ((x/2))−(1/3)∫((x^3 ((1/2)))/(1+(x^2 /4))) dx  L=(1/3)x^3 .tan^(−1) ((x/2))−(2/3)∫ (x^3 /(x^2 +4)) dx   L=(1/3)x^3 .tan^(−1) ((x/2))−(2/3)∫ ((x(x^2 +4)−4x)/(x^2 +4)) dx   = (1/3)x^3 .tan^(−1) ((x/2))−(1/3)x^2 +(4/3)∫ ((d(x^2 +4))/(x^2 +4))   =(1/3)x^3 .tan^(−1) ((x/2))−(1/3)x^2 +(4/3)ln ∣x^2 +4∣ + c

$$\mathcal{L}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{3}} .\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{x}^{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}}}\:\mathrm{dx} \\ $$$$\mathcal{L}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{3}} .\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\frac{\mathrm{2}}{\mathrm{3}}\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}\:\mathrm{dx}\: \\ $$$$\mathcal{L}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{3}} .\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\frac{\mathrm{2}}{\mathrm{3}}\int\:\frac{\mathrm{x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4}\right)−\mathrm{4x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}\:\mathrm{dx} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{3}} .\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{3}}\int\:\frac{\mathrm{d}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{4}} \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{3}} .\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{3}}\mathrm{ln}\:\mid\mathrm{x}^{\mathrm{2}} +\mathrm{4}\mid\:+\:\mathrm{c}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com