Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 215390 by MathematicalUser2357 last updated on 05/Jan/25

∮_γ x^2 dx [γ: x^2 +y^2 =1]

$$\oint_{\gamma} {x}^{\mathrm{2}} {dx}\:\left[\gamma:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\right] \\ $$

Answered by MrGaster last updated on 05/Jan/25

solve:∫_0 ^(2π) (cos t)^2 (−sin t)dt[∵x=cos t,y=sin t,dx=−sin t dt]     −  ∫_(0 ) ^(2π) cos^2 t sin t dt  =−[((cos^3 t)/3)]_0 ^(2π)   =−(((cos^3 (2π))/3)−((cos^3 (0))/3))  =−((1/3)−(1/3))  =0

$$\mathrm{solve}:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\mathrm{cos}\:{t}\right)^{\mathrm{2}} \left(−\mathrm{sin}\:{t}\right){dt}\left[\because{x}=\mathrm{cos}\:{t},{y}=\mathrm{sin}\:{t},{dx}=−\mathrm{sin}\:{t}\:{dt}\right] \\ $$$$\:\:\:−\:\:\int_{\mathrm{0}\:} ^{\mathrm{2}\pi} \mathrm{cos}^{\mathrm{2}} {t}\:\mathrm{sin}\:{t}\:{dt} \\ $$$$=−\left[\frac{\mathrm{cos}^{\mathrm{3}} {t}}{\mathrm{3}}\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \\ $$$$=−\left(\frac{\mathrm{cos}^{\mathrm{3}} \left(\mathrm{2}\pi\right)}{\mathrm{3}}−\frac{\mathrm{cos}^{\mathrm{3}} \left(\mathrm{0}\right)}{\mathrm{3}}\right) \\ $$$$=−\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com