Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 199903 by frankpenredpen last updated on 11/Nov/23

∫((x^2 dx)/( (√(x^2 −16)))) = ?

$$\int\frac{{x}^{\mathrm{2}} {dx}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{16}}}\:=\:? \\ $$

Commented by cortano12 last updated on 11/Nov/23

why ∂x ?

$$\mathrm{why}\:\partial\mathrm{x}\:? \\ $$

Answered by frankpenredpen last updated on 11/Nov/23

without integration for parts

$${without}\:{integration}\:{for}\:{parts} \\ $$

Answered by Frix last updated on 11/Nov/23

∫(x^2 /( (√(x^2 −16))))dx =^(t=x+(√(x^2 −16)))   =∫((t/4)+((64)/t^3 )+(8/t))dt=(t^2 /8)−((32)/t^2 )+8ln t =  =((x(√(x^2 −16)))/2)+8ln (x+(√(x^2 −16))) +C

$$\int\frac{{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{16}}}{dx}\:\overset{{t}={x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{16}}} {=} \\ $$$$=\int\left(\frac{{t}}{\mathrm{4}}+\frac{\mathrm{64}}{{t}^{\mathrm{3}} }+\frac{\mathrm{8}}{{t}}\right){dt}=\frac{{t}^{\mathrm{2}} }{\mathrm{8}}−\frac{\mathrm{32}}{{t}^{\mathrm{2}} }+\mathrm{8ln}\:{t}\:= \\ $$$$=\frac{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{16}}}{\mathrm{2}}+\mathrm{8ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{16}}\right)\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com