Question Number 335 by Vishal Bhardwaj last updated on 22/Dec/14 | ||
$$\int\:\frac{\sqrt{\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\left[{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{2}{lnx}\right]}{{x}^{\mathrm{4}} }\:{dx} \\ $$ | ||
Commented by 123456 last updated on 22/Dec/14 | ||
$$\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}^{\mathrm{4}} }\mathrm{ln}\:\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$ | ||
Commented by 123456 last updated on 23/Dec/14 | ||
$$\frac{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} \left[−\mathrm{3ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{6ln}\:{x}+\mathrm{2}\right]}{\mathrm{9}{x}^{\mathrm{3}} } \\ $$ | ||