Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 191451 by mathlove last updated on 24/Apr/23

x+(1/x)=5  and x∙y=4 find  x^2 +((1/y))^2 =?

$${x}+\frac{\mathrm{1}}{{x}}=\mathrm{5}\:\:{and}\:{x}\centerdot{y}=\mathrm{4}\:{find} \\ $$$${x}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{y}}\right)^{\mathrm{2}} =? \\ $$

Answered by mr W last updated on 24/Apr/23

x^2 −5x+1=0  x=((5±(√(21)))/2)  x^2 =5x−1  ((1/y))^2 =((x/4))^2 =(x^2 /(16))  x^2 +((1/y))^2 =((17x^2 )/(16))=((17)/(16))(5x−1)       =((17)/(16))(5×((5±(√(21)))/2)−1)=((391±85(√(21)))/(32))

$${x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{5}\pm\sqrt{\mathrm{21}}}{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} =\mathrm{5}{x}−\mathrm{1} \\ $$$$\left(\frac{\mathrm{1}}{{y}}\right)^{\mathrm{2}} =\left(\frac{{x}}{\mathrm{4}}\right)^{\mathrm{2}} =\frac{{x}^{\mathrm{2}} }{\mathrm{16}} \\ $$$${x}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{y}}\right)^{\mathrm{2}} =\frac{\mathrm{17}{x}^{\mathrm{2}} }{\mathrm{16}}=\frac{\mathrm{17}}{\mathrm{16}}\left(\mathrm{5}{x}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:=\frac{\mathrm{17}}{\mathrm{16}}\left(\mathrm{5}×\frac{\mathrm{5}\pm\sqrt{\mathrm{21}}}{\mathrm{2}}−\mathrm{1}\right)=\frac{\mathrm{391}\pm\mathrm{85}\sqrt{\mathrm{21}}}{\mathrm{32}} \\ $$

Commented by mehdee42 last updated on 24/Apr/23

sir W  please guide me how can i submit  a question in the group?

$${sir}\:{W} \\ $$$${please}\:{guide}\:{me}\:{how}\:{can}\:{i}\:{submit}\:\:{a}\:{question}\:{in}\:{the}\:{group}? \\ $$

Commented by Tinku Tara last updated on 24/Apr/23

Just press + button at top.

$$\mathrm{Just}\:\mathrm{press}\:+\:\mathrm{button}\:\mathrm{at}\:\mathrm{top}. \\ $$

Commented by mr W last updated on 24/Apr/23

to compose a new question just press  “+” button at the top;  to post an image as a question just  press “image” button at the top.

$${to}\:{compose}\:{a}\:{new}\:{question}\:{just}\:{press} \\ $$$$``+''\:{button}\:{at}\:{the}\:{top}; \\ $$$${to}\:{post}\:{an}\:{image}\:{as}\:{a}\:{question}\:{just} \\ $$$${press}\:``{image}''\:{button}\:{at}\:{the}\:{top}. \\ $$

Commented by mr W last updated on 24/Apr/23

Commented by mehdee42 last updated on 24/Apr/23

thank you very much for your kidness

$${thank}\:{you}\:{very}\:{much}\:{for}\:{your}\:{kidness} \\ $$

Commented by mathlove last updated on 25/Apr/23

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com