Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 85557 by naka3546 last updated on 23/Mar/20

x  =  (√(1+ (√(5+ (√(11+ (√(19+...))))))))  x  =   ?

$${x}\:\:=\:\:\sqrt{\mathrm{1}+\:\sqrt{\mathrm{5}+\:\sqrt{\mathrm{11}+\:\sqrt{\mathrm{19}+...}}}} \\ $$$${x}\:\:=\:\:\:? \\ $$

Commented by MJS last updated on 23/Mar/20

2?

$$\mathrm{2}? \\ $$

Commented by naka3546 last updated on 23/Mar/20

show  your  workings , please .

$${show}\:\:{your}\:\:{workings}\:,\:{please}\:. \\ $$

Commented by mr W last updated on 23/Mar/20

n=(√n^2 )=(√([n^2 −(n+1)]+(n+1)))  =(√([n^2 −(n+1)]+(√([(n+1)^2 −(n+2)]+(n+2)))))  =(√([n^2 −(n+1)]+(√([(n+1)^2 −(n+2)]+(√([(n+2)^2 −(n+3)]+(n+3)))))))  =(√([n^2 −(n+1)]+(√([(n+1)^2 −(n+2)]+(√([(n+2)^2 −(n+3)]+(√([(n+3)^2 −(n+4)]+(√(...))))))))))    ⇒n=(√([n^2 −(n+1)]+(√([(n+1)^2 −(n+2)]+(√([(n+2)^2 −(n+3)]+(√([(n+3)^2 −(n+4)]+(√(...))))))))))  let n=2:  2=(√(1+(√(5+(√(11+(√(19+(√(...))))))))))

$${n}=\sqrt{{n}^{\mathrm{2}} }=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\left({n}+\mathrm{1}\right)} \\ $$$$=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\sqrt{\left[\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{2}\right)\right]+\left({n}+\mathrm{2}\right)}} \\ $$$$=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\sqrt{\left[\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{2}\right)\right]+\sqrt{\left[\left({n}+\mathrm{2}\right)^{\mathrm{2}} −\left({n}+\mathrm{3}\right)\right]+\left({n}+\mathrm{3}\right)}}} \\ $$$$=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\sqrt{\left[\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{2}\right)\right]+\sqrt{\left[\left({n}+\mathrm{2}\right)^{\mathrm{2}} −\left({n}+\mathrm{3}\right)\right]+\sqrt{\left[\left({n}+\mathrm{3}\right)^{\mathrm{2}} −\left({n}+\mathrm{4}\right)\right]+\sqrt{...}}}}} \\ $$$$ \\ $$$$\Rightarrow{n}=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\sqrt{\left[\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{2}\right)\right]+\sqrt{\left[\left({n}+\mathrm{2}\right)^{\mathrm{2}} −\left({n}+\mathrm{3}\right)\right]+\sqrt{\left[\left({n}+\mathrm{3}\right)^{\mathrm{2}} −\left({n}+\mathrm{4}\right)\right]+\sqrt{...}}}}} \\ $$$${let}\:{n}=\mathrm{2}: \\ $$$$\mathrm{2}=\sqrt{\mathrm{1}+\sqrt{\mathrm{5}+\sqrt{\mathrm{11}+\sqrt{\mathrm{19}+\sqrt{...}}}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com