Question Number 85557 by naka3546 last updated on 23/Mar/20 | ||
$${x}\:\:=\:\:\sqrt{\mathrm{1}+\:\sqrt{\mathrm{5}+\:\sqrt{\mathrm{11}+\:\sqrt{\mathrm{19}+...}}}} \\ $$$${x}\:\:=\:\:\:? \\ $$ | ||
Commented by MJS last updated on 23/Mar/20 | ||
$$\mathrm{2}? \\ $$ | ||
Commented by naka3546 last updated on 23/Mar/20 | ||
$${show}\:\:{your}\:\:{workings}\:,\:{please}\:. \\ $$ | ||
Commented by mr W last updated on 23/Mar/20 | ||
$${n}=\sqrt{{n}^{\mathrm{2}} }=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\left({n}+\mathrm{1}\right)} \\ $$$$=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\sqrt{\left[\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{2}\right)\right]+\left({n}+\mathrm{2}\right)}} \\ $$$$=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\sqrt{\left[\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{2}\right)\right]+\sqrt{\left[\left({n}+\mathrm{2}\right)^{\mathrm{2}} −\left({n}+\mathrm{3}\right)\right]+\left({n}+\mathrm{3}\right)}}} \\ $$$$=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\sqrt{\left[\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{2}\right)\right]+\sqrt{\left[\left({n}+\mathrm{2}\right)^{\mathrm{2}} −\left({n}+\mathrm{3}\right)\right]+\sqrt{\left[\left({n}+\mathrm{3}\right)^{\mathrm{2}} −\left({n}+\mathrm{4}\right)\right]+\sqrt{...}}}}} \\ $$$$ \\ $$$$\Rightarrow{n}=\sqrt{\left[{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)\right]+\sqrt{\left[\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\left({n}+\mathrm{2}\right)\right]+\sqrt{\left[\left({n}+\mathrm{2}\right)^{\mathrm{2}} −\left({n}+\mathrm{3}\right)\right]+\sqrt{\left[\left({n}+\mathrm{3}\right)^{\mathrm{2}} −\left({n}+\mathrm{4}\right)\right]+\sqrt{...}}}}} \\ $$$${let}\:{n}=\mathrm{2}: \\ $$$$\mathrm{2}=\sqrt{\mathrm{1}+\sqrt{\mathrm{5}+\sqrt{\mathrm{11}+\sqrt{\mathrm{19}+\sqrt{...}}}}} \\ $$ | ||