Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      Next in Operation Research      

Question Number 130827 by bemath last updated on 29/Jan/21

[ (x+1)^(2 ) D^2 +(x+1)D+1 ]y = 4cos (ln( x+1))

$$\left[\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}\:} \mathrm{D}^{\mathrm{2}} +\left(\mathrm{x}+\mathrm{1}\right)\mathrm{D}+\mathrm{1}\:\right]\mathrm{y}\:=\:\mathrm{4cos}\:\left(\mathrm{ln}\left(\:\mathrm{x}+\mathrm{1}\right)\right) \\ $$

Answered by EDWIN88 last updated on 29/Jan/21

let ln (x+1)=t ⇒x+1 = e^t    { (((dy/dx) = (dy/dt)×(dt/dx) = (1/(x+1)).(dy/dt))),(((d^2 y/dx) = (d/dx) [ (1/(x+1)) (dy/dt) ]= (1/((x+1)^2 )) [(d^2 y/dt^2 )−(dy/dt) ])) :}    ((d^2 y/dt^2 )−(dy/dt))+(dy/dt) +y = 4cos t   (d^2 y/dt^2 ) +y = 4cos t   for homogenous solution   y_h  = C_1 cos t + C_2 sin t  particular solution   y_p  = At cos t + Bt sin t   we get  { ((A=0)),((B=2)) :}  ⇒y_p = 2t sin t  General solution   y = C_1 cos t + C_2 sin t + 2t sin t   y = C_1 cos (ln (x+1))+C_2 sin (ln (x+1))+2ln (x+1)sin (ln (x+1))

$${let}\:\mathrm{ln}\:\left({x}+\mathrm{1}\right)={t}\:\Rightarrow{x}+\mathrm{1}\:=\:{e}^{{t}} \\ $$$$\begin{cases}{\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{dt}}×\frac{{dt}}{{dx}}\:=\:\frac{\mathrm{1}}{{x}+\mathrm{1}}.\frac{{dy}}{{dt}}}\\{\frac{{d}^{\mathrm{2}} {y}}{{dx}}\:=\:\frac{{d}}{{dx}}\:\left[\:\frac{\mathrm{1}}{{x}+\mathrm{1}}\:\frac{{dy}}{{dt}}\:\right]=\:\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\left[\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }−\frac{{dy}}{{dt}}\:\right]}\end{cases} \\ $$$$ \\ $$$$\left(\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }−\frac{{dy}}{{dt}}\right)+\frac{{dy}}{{dt}}\:+{y}\:=\:\mathrm{4cos}\:{t} \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }\:+{y}\:=\:\mathrm{4cos}\:{t}\: \\ $$$${for}\:{homogenous}\:{solution}\: \\ $$$${y}_{{h}} \:=\:{C}_{\mathrm{1}} \mathrm{cos}\:{t}\:+\:{C}_{\mathrm{2}} \mathrm{sin}\:{t} \\ $$$${particular}\:{solution}\: \\ $$$${y}_{{p}} \:=\:{At}\:\mathrm{cos}\:{t}\:+\:{Bt}\:\mathrm{sin}\:{t}\: \\ $$$${we}\:{get}\:\begin{cases}{{A}=\mathrm{0}}\\{{B}=\mathrm{2}}\end{cases}\:\:\Rightarrow{y}_{{p}} =\:\mathrm{2}{t}\:\mathrm{sin}\:{t} \\ $$$$\mathcal{G}{eneral}\:{solution}\: \\ $$$${y}\:=\:{C}_{\mathrm{1}} \mathrm{cos}\:{t}\:+\:{C}_{\mathrm{2}} \mathrm{sin}\:{t}\:+\:\mathrm{2}{t}\:\mathrm{sin}\:{t}\: \\ $$$${y}\:=\:{C}_{\mathrm{1}} \mathrm{cos}\:\left(\mathrm{ln}\:\left({x}+\mathrm{1}\right)\right)+{C}_{\mathrm{2}} \mathrm{sin}\:\left(\mathrm{ln}\:\left({x}+\mathrm{1}\right)\right)+\mathrm{2ln}\:\left({x}+\mathrm{1}\right)\mathrm{sin}\:\left(\mathrm{ln}\:\left({x}+\mathrm{1}\right)\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com