Question Number 130827 by bemath last updated on 29/Jan/21 | ||
$$\left[\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}\:} \mathrm{D}^{\mathrm{2}} +\left(\mathrm{x}+\mathrm{1}\right)\mathrm{D}+\mathrm{1}\:\right]\mathrm{y}\:=\:\mathrm{4cos}\:\left(\mathrm{ln}\left(\:\mathrm{x}+\mathrm{1}\right)\right) \\ $$ | ||
Answered by EDWIN88 last updated on 29/Jan/21 | ||
$${let}\:\mathrm{ln}\:\left({x}+\mathrm{1}\right)={t}\:\Rightarrow{x}+\mathrm{1}\:=\:{e}^{{t}} \\ $$$$\begin{cases}{\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{dt}}×\frac{{dt}}{{dx}}\:=\:\frac{\mathrm{1}}{{x}+\mathrm{1}}.\frac{{dy}}{{dt}}}\\{\frac{{d}^{\mathrm{2}} {y}}{{dx}}\:=\:\frac{{d}}{{dx}}\:\left[\:\frac{\mathrm{1}}{{x}+\mathrm{1}}\:\frac{{dy}}{{dt}}\:\right]=\:\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\left[\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }−\frac{{dy}}{{dt}}\:\right]}\end{cases} \\ $$$$ \\ $$$$\left(\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }−\frac{{dy}}{{dt}}\right)+\frac{{dy}}{{dt}}\:+{y}\:=\:\mathrm{4cos}\:{t} \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }\:+{y}\:=\:\mathrm{4cos}\:{t}\: \\ $$$${for}\:{homogenous}\:{solution}\: \\ $$$${y}_{{h}} \:=\:{C}_{\mathrm{1}} \mathrm{cos}\:{t}\:+\:{C}_{\mathrm{2}} \mathrm{sin}\:{t} \\ $$$${particular}\:{solution}\: \\ $$$${y}_{{p}} \:=\:{At}\:\mathrm{cos}\:{t}\:+\:{Bt}\:\mathrm{sin}\:{t}\: \\ $$$${we}\:{get}\:\begin{cases}{{A}=\mathrm{0}}\\{{B}=\mathrm{2}}\end{cases}\:\:\Rightarrow{y}_{{p}} =\:\mathrm{2}{t}\:\mathrm{sin}\:{t} \\ $$$$\mathcal{G}{eneral}\:{solution}\: \\ $$$${y}\:=\:{C}_{\mathrm{1}} \mathrm{cos}\:{t}\:+\:{C}_{\mathrm{2}} \mathrm{sin}\:{t}\:+\:\mathrm{2}{t}\:\mathrm{sin}\:{t}\: \\ $$$${y}\:=\:{C}_{\mathrm{1}} \mathrm{cos}\:\left(\mathrm{ln}\:\left({x}+\mathrm{1}\right)\right)+{C}_{\mathrm{2}} \mathrm{sin}\:\left(\mathrm{ln}\:\left({x}+\mathrm{1}\right)\right)+\mathrm{2ln}\:\left({x}+\mathrm{1}\right)\mathrm{sin}\:\left(\mathrm{ln}\:\left({x}+\mathrm{1}\right)\right) \\ $$ | ||