Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 195419 by CrispyXYZ last updated on 02/Aug/23

x≠0. Σ_(i=1) ^n ix^(i−1) =?

$${x}\neq\mathrm{0}.\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{ix}^{{i}−\mathrm{1}} =? \\ $$

Answered by MathedUp last updated on 02/Aug/23

x≠0. Σ_(i=1) ^n ix^(i−1) =?  Σ_(k=1) ^m kx^(k−1) =((d  )/dx) Σ x^k =((d  )/dx) ((x(x^n −1))/(x−1))

$${x}\neq\mathrm{0}.\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{ix}^{{i}−\mathrm{1}} =? \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{kx}^{{k}−\mathrm{1}} =\frac{\mathrm{d}\:\:}{\mathrm{d}{x}}\:\Sigma\:{x}^{{k}} =\frac{\mathrm{d}\:\:}{\mathrm{d}{x}}\:\frac{{x}\left({x}^{{n}} −\mathrm{1}\right)}{{x}−\mathrm{1}} \\ $$

Commented by MathedUp last updated on 02/Aug/23

∴ ((m∙x^(m+1) −(m+1)∙x^m +1)/((x−1)^2 ))

$$\therefore\:\frac{{m}\centerdot{x}^{{m}+\mathrm{1}} −\left({m}+\mathrm{1}\right)\centerdot{x}^{{m}} +\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by MathedUp last updated on 02/Aug/23

Bonus if x→1  Σ_(k=1) ^m k∙x^(k−1) =Σ_(k=1) ^m k  lim_(x→1)  ((m∙x^(m+1) −(m+1)x^m +1)/((x−1)^2 ))=((m(m+1))/2)  and we can get Ramanujan Sum by  Change this Equation  So Funny :⟩

$$\mathrm{Bonus}\:\mathrm{if}\:{x}\rightarrow\mathrm{1}\:\:\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{k}\centerdot{x}^{{k}−\mathrm{1}} =\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{k} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{m}\centerdot{x}^{{m}+\mathrm{1}} −\left({m}+\mathrm{1}\right){x}^{{m}} +\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }=\frac{{m}\left({m}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{we}\:\mathrm{can}\:\mathrm{get}\:\mathrm{Ramanujan}\:\mathrm{Sum}\:\mathrm{by} \\ $$$$\mathrm{Change}\:\mathrm{this}\:\mathrm{Equation} \\ $$$$\mathrm{So}\:\mathrm{Funny}\::\rangle \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com