Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 214712 by efronzo1 last updated on 17/Dec/24

   x

$$\:\:\:\cancel{\underline{\underbrace{\boldsymbol{{x}}}}} \\ $$

Answered by mr W last updated on 17/Dec/24

r^2 −3r+2=0  (r−1)(r−2)=0  r=1, 2  ⇒a_n =A×1^n +B×2^n   a_0 =A+B=2  a_1 =A+2B=5  ⇒B=3, A=−1  ⇒a_n =3×2^n −1 ✓

$${r}^{\mathrm{2}} −\mathrm{3}{r}+\mathrm{2}=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}−\mathrm{2}\right)=\mathrm{0} \\ $$$${r}=\mathrm{1},\:\mathrm{2} \\ $$$$\Rightarrow{a}_{{n}} ={A}×\mathrm{1}^{{n}} +{B}×\mathrm{2}^{{n}} \\ $$$${a}_{\mathrm{0}} ={A}+{B}=\mathrm{2} \\ $$$${a}_{\mathrm{1}} ={A}+\mathrm{2}{B}=\mathrm{5} \\ $$$$\Rightarrow{B}=\mathrm{3},\:{A}=−\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}} =\mathrm{3}×\mathrm{2}^{{n}} −\mathrm{1}\:\checkmark \\ $$

Answered by mr W last updated on 17/Dec/24

alternative approach  a_(n+2) −a_(n+1) =2(a_(n+1) −a_n )  say b_n =a_(n+1) −a_n   b_(n+1) =2b_n   ← G.P.  ⇒b_n =2^n ×b_0 =2^n (a_1 −a_0 )=3×2^n   a_(n+1) −a_n =3×2^n   a_n −a_(n−1) =3×2^(n−1)   ......  a_1 −a_0 =3×2^0   a_(n+1) −a_0 =3(1+2+...+2^n )=3×((2^(n+1) −1)/(2−1))  a_(n+1) =3×((2^(n+1) −1)/(2−1))+2=3×2^(n+1) −1  ⇒a_n =3×2^n −1 ✓

$${alternative}\:{approach} \\ $$$${a}_{{n}+\mathrm{2}} −{a}_{{n}+\mathrm{1}} =\mathrm{2}\left({a}_{{n}+\mathrm{1}} −{a}_{{n}} \right) \\ $$$${say}\:{b}_{{n}} ={a}_{{n}+\mathrm{1}} −{a}_{{n}} \\ $$$${b}_{{n}+\mathrm{1}} =\mathrm{2}{b}_{{n}} \:\:\leftarrow\:{G}.{P}. \\ $$$$\Rightarrow{b}_{{n}} =\mathrm{2}^{{n}} ×{b}_{\mathrm{0}} =\mathrm{2}^{{n}} \left({a}_{\mathrm{1}} −{a}_{\mathrm{0}} \right)=\mathrm{3}×\mathrm{2}^{{n}} \\ $$$${a}_{{n}+\mathrm{1}} −{a}_{{n}} =\mathrm{3}×\mathrm{2}^{{n}} \\ $$$${a}_{{n}} −{a}_{{n}−\mathrm{1}} =\mathrm{3}×\mathrm{2}^{{n}−\mathrm{1}} \\ $$$$...... \\ $$$${a}_{\mathrm{1}} −{a}_{\mathrm{0}} =\mathrm{3}×\mathrm{2}^{\mathrm{0}} \\ $$$${a}_{{n}+\mathrm{1}} −{a}_{\mathrm{0}} =\mathrm{3}\left(\mathrm{1}+\mathrm{2}+...+\mathrm{2}^{{n}} \right)=\mathrm{3}×\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{2}−\mathrm{1}} \\ $$$${a}_{{n}+\mathrm{1}} =\mathrm{3}×\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{2}−\mathrm{1}}+\mathrm{2}=\mathrm{3}×\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}} =\mathrm{3}×\mathrm{2}^{{n}} −\mathrm{1}\:\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com