Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 189803 by uchihayahia last updated on 22/Mar/23

  what′s the minimum value of  a+(1/(b(a−b))) where a>b>0 a,b∈R

$$ \\ $$$${what}'{s}\:{the}\:{minimum}\:{value}\:{of} \\ $$$${a}+\frac{\mathrm{1}}{{b}\left({a}−{b}\right)}\:{where}\:{a}>{b}>\mathrm{0}\:{a},{b}\in\mathbb{R} \\ $$$$ \\ $$

Answered by cortano12 last updated on 22/Mar/23

 f(a,b)=a+b^(−1) (a−b)^(−1) =a+(ab−b^2 )^(−1)   (∂f/∂a) =1−b(ab−b^2 )^(−2) =0   (∂f/∂b) =−(a−2b)(ab−b^2 )^(−2) =0    { ((1=(b/((ab−b^2 )^2 ))⇒1=(1/(b(2b−b)^2 )))),((((2b−a)/((ab−b^2 )^2 ))=0⇒a=2b)) :}   ⇒b^3  = 1⇒ { ((b=1)),((a=2)) :}    f(2,1)=2+(1/(1.(2−1))) = 3

$$\:\mathrm{f}\left({a},{b}\right)={a}+{b}^{−\mathrm{1}} \left({a}−{b}\right)^{−\mathrm{1}} ={a}+\left({ab}−{b}^{\mathrm{2}} \right)^{−\mathrm{1}} \\ $$$$\frac{\partial\mathrm{f}}{\partial{a}}\:=\mathrm{1}−{b}\left({ab}−{b}^{\mathrm{2}} \right)^{−\mathrm{2}} =\mathrm{0} \\ $$$$\:\frac{\partial\mathrm{f}}{\partial{b}}\:=−\left({a}−\mathrm{2}{b}\right)\left({ab}−{b}^{\mathrm{2}} \right)^{−\mathrm{2}} =\mathrm{0} \\ $$$$\:\begin{cases}{\mathrm{1}=\frac{{b}}{\left({ab}−{b}^{\mathrm{2}} \right)^{\mathrm{2}} }\Rightarrow\mathrm{1}=\frac{\mathrm{1}}{{b}\left(\mathrm{2}{b}−{b}\right)^{\mathrm{2}} }}\\{\frac{\mathrm{2}{b}−{a}}{\left({ab}−{b}^{\mathrm{2}} \right)^{\mathrm{2}} }=\mathrm{0}\Rightarrow{a}=\mathrm{2}{b}}\end{cases} \\ $$$$\:\Rightarrow{b}^{\mathrm{3}} \:=\:\mathrm{1}\Rightarrow\begin{cases}{{b}=\mathrm{1}}\\{{a}=\mathrm{2}}\end{cases}\: \\ $$$$\:\mathrm{f}\left(\mathrm{2},\mathrm{1}\right)=\mathrm{2}+\frac{\mathrm{1}}{\mathrm{1}.\left(\mathrm{2}−\mathrm{1}\right)}\:=\:\mathrm{3} \\ $$

Commented by uchihayahia last updated on 23/Mar/23

thank you

$${thank}\:{you} \\ $$

Answered by mr W last updated on 22/Mar/23

a+(1/(b(a−b)))  =a−b+b+(1/(b(a−b)))  =c+b+(1/(bc))                (with c=a−b>0)  ≥3((c×b×(1/(bc))))^(1/3) =3  ⇒minimum is 3

$${a}+\frac{\mathrm{1}}{{b}\left({a}−{b}\right)} \\ $$$$={a}−{b}+{b}+\frac{\mathrm{1}}{{b}\left({a}−{b}\right)} \\ $$$$={c}+{b}+\frac{\mathrm{1}}{{bc}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({with}\:{c}={a}−{b}>\mathrm{0}\right) \\ $$$$\geqslant\mathrm{3}\sqrt[{\mathrm{3}}]{{c}×{b}×\frac{\mathrm{1}}{{bc}}}=\mathrm{3} \\ $$$$\Rightarrow{minimum}\:{is}\:\mathrm{3} \\ $$

Commented by manxsol last updated on 22/Mar/23

thanks, Sir W y Sr. Cortano

$${thanks},\:{Sir}\:{W}\:{y}\:{Sr}.\:{Cortano} \\ $$

Commented by mehdee42 last updated on 22/Mar/23

Bravo .Very beautiful

$${Bravo}\:.{Very}\:{beautiful} \\ $$

Commented by uchihayahia last updated on 23/Mar/23

thanks this is what i looking for

$${thanks}\:{this}\:{is}\:{what}\:{i}\:{looking}\:{for} \\ $$

Answered by ajfour last updated on 23/Mar/23

f=((ab)/b)+(1/(ab−b^2 ))     =(1/( (√b)))(((ab−b^2 )/( (√b)))+((√b)/(ab−b^2 )))+b   =(2/( (√b)))+b  (df/db)=−(1/(b(√b)))+1   =0  ⇒  b=1  f_(min) =2+1

$${f}=\frac{{ab}}{{b}}+\frac{\mathrm{1}}{{ab}−{b}^{\mathrm{2}} } \\ $$$$\:\:\:=\frac{\mathrm{1}}{\:\sqrt{{b}}}\left(\frac{{ab}−{b}^{\mathrm{2}} }{\:\sqrt{{b}}}+\frac{\sqrt{{b}}}{{ab}−{b}^{\mathrm{2}} }\right)+{b} \\ $$$$\:=\frac{\mathrm{2}}{\:\sqrt{{b}}}+{b} \\ $$$$\frac{{df}}{{db}}=−\frac{\mathrm{1}}{{b}\sqrt{{b}}}+\mathrm{1}\:\:\:=\mathrm{0}\:\:\Rightarrow\:\:{b}=\mathrm{1} \\ $$$${f}_{{min}} =\mathrm{2}+\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com