Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 76842 by jagoll last updated on 31/Dec/19

  what is solution y^(′′ ) +  y = 0 .

$$ \\ $$$${what}\:{is}\:{solution}\:{y}^{''\:} +\:\:{y}\:=\:\mathrm{0}\:. \\ $$

Commented by mathmax by abdo last updated on 31/Dec/19

the caraceristc equation is r^2 +1=0 ⇒r=i or r=−i ⇒  y(x) =αe^(ix)  +β e^(−ix)   ⇒y(x)=acosx+ bsinx

$${the}\:{caraceristc}\:{equation}\:{is}\:{r}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}\:\Rightarrow{r}={i}\:{or}\:{r}=−{i}\:\Rightarrow \\ $$$${y}\left({x}\right)\:=\alpha{e}^{{ix}} \:+\beta\:{e}^{−{ix}} \:\:\Rightarrow{y}\left({x}\right)={acosx}+\:{bsinx} \\ $$

Answered by mr W last updated on 31/Dec/19

let y′=(dy/dx)=u  y′′=((d(y′))/dx)=(du/dx)=(du/dy)×(dy/dx)=(du/dy)×u  ⇒(du/dy)×u+y=0  ⇒udu=−ydy  ⇒∫udu=−∫ydy  ⇒(u^2 /2)=−(y^2 /2)+(c_1 ^2 /2)  ⇒u=±(√(c_1 ^2 −y^2 ))  ⇒(dy/dx)=±(√(c_1 ^2 −y^2 ))  ⇒(dy/(√(c_1 ^2 −y^2 )))=±dx  ⇒∫(dy/(√(c_1 ^2 −y^2 )))=±∫dx  ⇒sin^(−1) (y/c_1 )=±x+c_2   ⇒y=c_1 sin (±x+c_2 )  ⇒y=c_1 sin (x+c_2 )

$${let}\:{y}'=\frac{{dy}}{{dx}}={u} \\ $$$${y}''=\frac{{d}\left({y}'\right)}{{dx}}=\frac{{du}}{{dx}}=\frac{{du}}{{dy}}×\frac{{dy}}{{dx}}=\frac{{du}}{{dy}}×{u} \\ $$$$\Rightarrow\frac{{du}}{{dy}}×{u}+{y}=\mathrm{0} \\ $$$$\Rightarrow{udu}=−{ydy} \\ $$$$\Rightarrow\int{udu}=−\int{ydy} \\ $$$$\Rightarrow\frac{{u}^{\mathrm{2}} }{\mathrm{2}}=−\frac{{y}^{\mathrm{2}} }{\mathrm{2}}+\frac{{c}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow{u}=\pm\sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\pm\sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{dy}}{\sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} −{y}^{\mathrm{2}} }}=\pm{dx} \\ $$$$\Rightarrow\int\frac{{dy}}{\sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} −{y}^{\mathrm{2}} }}=\pm\int{dx} \\ $$$$\Rightarrow\mathrm{sin}^{−\mathrm{1}} \frac{{y}}{{c}_{\mathrm{1}} }=\pm{x}+{c}_{\mathrm{2}} \\ $$$$\Rightarrow{y}={c}_{\mathrm{1}} \mathrm{sin}\:\left(\pm{x}+{c}_{\mathrm{2}} \right) \\ $$$$\Rightarrow{y}={c}_{\mathrm{1}} \mathrm{sin}\:\left({x}+{c}_{\mathrm{2}} \right) \\ $$

Commented by jagoll last updated on 31/Dec/19

thanks you sir

$${thanks}\:{you}\:{sir} \\ $$

Commented by jagoll last updated on 31/Dec/19

sir why not c_(1 ) as constan first integrate ?   but (1/2)c_(1 ) ^( 2 )

$${sir}\:{why}\:{not}\:{c}_{\mathrm{1}\:} {as}\:{constan}\:{first}\:{integrate}\:?\: \\ $$$${but}\:\frac{\mathrm{1}}{\mathrm{2}}{c}_{\mathrm{1}\:} ^{\:\mathrm{2}\:} \\ $$

Commented by mr W last updated on 31/Dec/19

it makes no real difference, but  looks better in later operations.

$${it}\:{makes}\:{no}\:{real}\:{difference},\:{but} \\ $$$${looks}\:{better}\:{in}\:{later}\:{operations}. \\ $$

Commented by jagoll last updated on 31/Dec/19

oo ok sir thanks you

$${oo}\:{ok}\:{sir}\:{thanks}\:{you} \\ $$

Answered by Rio Michael last updated on 18/Jan/20

i could also solve this by   (d^2 y/(dx^2  )) + y = 0  the auxiliary equation is  r^2  + 1 = 0  ⇒ r= i or r = −i  or  r = 0 + i and r = 0−i   the general solution  is of the firm  y = e^(px) (Acosqx +B sinqx)  where p =0 and q=1  y = Acos x + Bsinx

$${i}\:{could}\:{also}\:{solve}\:{this}\:{by}\: \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} \:}\:+\:{y}\:=\:\mathrm{0} \\ $$$${the}\:{auxiliary}\:{equation}\:{is} \\ $$$${r}^{\mathrm{2}} \:+\:\mathrm{1}\:=\:\mathrm{0}\:\:\Rightarrow\:{r}=\:{i}\:{or}\:{r}\:=\:−{i} \\ $$$${or}\:\:{r}\:=\:\mathrm{0}\:+\:{i}\:{and}\:{r}\:=\:\mathrm{0}−{i}\: \\ $$$${the}\:{general}\:{solution} \\ $$$${is}\:{of}\:{the}\:{firm}\:\:{y}\:=\:{e}^{{px}} \left({Acosqx}\:+{B}\:{sinqx}\right) \\ $$$${where}\:{p}\:=\mathrm{0}\:{and}\:{q}=\mathrm{1} \\ $$$${y}\:=\:{Acos}\:{x}\:+\:{Bsinx} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com