Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 30483 by abdo imad last updated on 22/Feb/18

we define the bernoulli polynomial B_n  by  b_0 =1 and ∀n∈ N^★    b_n ^′ =n b_(n−1)   and  ∫_0 ^1 b_n (t)dt=0  1) find b_n (1)−b_n (0) for n≥2  2)  prove that b_n (x)=(−1)^n b_n (1−x)∀n∈N  3)calculate b_0 , b_1 ,b_2  ,b_3

$${we}\:{define}\:{the}\:{bernoulli}\:{polynomial}\:{B}_{{n}} \:{by} \\ $$$${b}_{\mathrm{0}} =\mathrm{1}\:{and}\:\forall{n}\in\:{N}^{\bigstar} \:\:\:{b}_{{n}} ^{'} ={n}\:{b}_{{n}−\mathrm{1}} \:\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {b}_{{n}} \left({t}\right){dt}=\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{b}_{{n}} \left(\mathrm{1}\right)−{b}_{{n}} \left(\mathrm{0}\right)\:{for}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:\:{prove}\:{that}\:{b}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} {b}_{{n}} \left(\mathrm{1}−{x}\right)\forall{n}\in{N} \\ $$$$\left.\mathrm{3}\right){calculate}\:{b}_{\mathrm{0}} ,\:{b}_{\mathrm{1}} ,{b}_{\mathrm{2}} \:,{b}_{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com