Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 210956 by mahdipoor last updated on 23/Aug/24

we define : ln(x)=∫_1 ^( x) (dx/x)  how prove : ln(x)=log_e x   ?

$${we}\:{define}\::\:{ln}\left({x}\right)=\int_{\mathrm{1}} ^{\:{x}} \frac{{dx}}{{x}} \\ $$$${how}\:{prove}\::\:{ln}\left({x}\right)={log}_{{e}} {x}\:\:\:? \\ $$

Commented by Ghisom last updated on 24/Aug/24

an idea:  the area between y=0 and y=∫_1 ^b  (dx/x) must  be 1 for the base b of the logarithm.  use any approximation formula for areas  under curves.    also possible: adding up rectangles until  the sum of their areas exceed 1:  width (1/(10)) ⇒ b≈2.6...  width (1/(100)) ⇒ b≈2.7...  width (1/(1000)) ⇒ b≈2.717...  width (1/(10000)) ⇒ b≈2.7182...  this is intuitive but converges slowly

$$\mathrm{an}\:\mathrm{idea}: \\ $$$$\mathrm{the}\:\mathrm{area}\:\mathrm{between}\:{y}=\mathrm{0}\:\mathrm{and}\:{y}=\underset{\mathrm{1}} {\overset{{b}} {\int}}\:\frac{{dx}}{{x}}\:\mathrm{must} \\ $$$$\mathrm{be}\:\mathrm{1}\:\mathrm{for}\:\mathrm{the}\:\mathrm{base}\:{b}\:\mathrm{of}\:\mathrm{the}\:\mathrm{logarithm}. \\ $$$$\mathrm{use}\:\mathrm{any}\:\mathrm{approximation}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{areas} \\ $$$$\mathrm{under}\:\mathrm{curves}. \\ $$$$ \\ $$$$\mathrm{also}\:\mathrm{possible}:\:\mathrm{adding}\:\mathrm{up}\:\mathrm{rectangles}\:\mathrm{until} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{areas}\:\mathrm{exceed}\:\mathrm{1}: \\ $$$$\mathrm{width}\:\frac{\mathrm{1}}{\mathrm{10}}\:\Rightarrow\:{b}\approx\mathrm{2}.\mathrm{6}... \\ $$$$\mathrm{width}\:\frac{\mathrm{1}}{\mathrm{100}}\:\Rightarrow\:{b}\approx\mathrm{2}.\mathrm{7}... \\ $$$$\mathrm{width}\:\frac{\mathrm{1}}{\mathrm{1000}}\:\Rightarrow\:{b}\approx\mathrm{2}.\mathrm{717}... \\ $$$$\mathrm{width}\:\frac{\mathrm{1}}{\mathrm{10000}}\:\Rightarrow\:{b}\approx\mathrm{2}.\mathrm{7182}... \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{intuitive}\:\mathrm{but}\:\mathrm{converges}\:\mathrm{slowly} \\ $$

Answered by mm1342 last updated on 24/Aug/24

ln a = log_e  a     this is a defined symbol  such as  log a = log_(10)  a  !

$${ln}\:{a}\:=\:{log}_{{e}} \:{a}\:\:\:\:\:{this}\:{is}\:{a}\:{defined}\:{symbol} \\ $$$${such}\:{as}\:\:{log}\:{a}\:=\:{log}_{\mathrm{10}} \:{a}\:\:! \\ $$

Commented by mahdipoor last updated on 24/Aug/24

ok , prove : log_e x=∫_1 ^( x) dx/x

$${ok}\:,\:{prove}\::\:{log}_{{e}} {x}=\int_{\mathrm{1}} ^{\:{x}} {dx}/{x} \\ $$

Commented by mm1342 last updated on 24/Aug/24

 ⋛

$$\:\underline{\underbrace{\lesseqgtr}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com