Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 215280 by universe last updated on 02/Jan/25

volume of solids generated by revolving  the region bounded by the curve and line   the y-axis   y=x ,y = x/2 ,x = 2

$${volume}\:{of}\:{solids}\:{generated}\:{by}\:{revolving} \\ $$$${the}\:{region}\:{bounded}\:{by}\:{the}\:{curve}\:{and}\:{line} \\ $$$$\:{the}\:{y}-{axis} \\ $$$$\:{y}={x}\:,{y}\:=\:{x}/\mathrm{2}\:,{x}\:=\:\mathrm{2} \\ $$

Commented by mr W last updated on 02/Jan/25

rotated about which axis?

$${rotated}\:{about}\:{which}\:{axis}? \\ $$

Commented by universe last updated on 02/Jan/25

y −axis

$${y}\:−{axis} \\ $$

Answered by MrGaster last updated on 02/Jan/25

V=π∫_a ^b [f(x)]^2 −[g(x)]^2 dx  V=π∫_0 ^2 [x]^2 −[(π/2)]^2 dx  V=π∫_0 ^2 x^2 −(x^2 /4)dx  V=π∫_0 ^2 ((4x^2 )/4)−(x^2 /4)dx  V=π∫_0 ^2 ((3x^2 )/4)dx  V=π[((3x^3 )/(12))]_0 ^2   V=π(((3∙2^3 )/(12))−((3∙0^3 )/(12)))  V=π(((3∙8)/(12)))  V=π(((24)/(12)))  V=2π

$${V}=\pi\int_{{a}} ^{{b}} \left[{f}\left({x}\right)\right]^{\mathrm{2}} −\left[{g}\left({x}\right)\right]^{\mathrm{2}} {dx} \\ $$$${V}=\pi\int_{\mathrm{0}} ^{\mathrm{2}} \left[{x}\right]^{\mathrm{2}} −\left[\frac{\pi}{\mathrm{2}}\right]^{\mathrm{2}} {dx} \\ $$$${V}=\pi\int_{\mathrm{0}} ^{\mathrm{2}} {x}^{\mathrm{2}} −\frac{{x}^{\mathrm{2}} }{\mathrm{4}}{dx} \\ $$$${V}=\pi\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{4}{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}{dx} \\ $$$${V}=\pi\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{4}}{dx} \\ $$$${V}=\pi\left[\frac{\mathrm{3}{x}^{\mathrm{3}} }{\mathrm{12}}\right]_{\mathrm{0}} ^{\mathrm{2}} \\ $$$${V}=\pi\left(\frac{\mathrm{3}\centerdot\mathrm{2}^{\mathrm{3}} }{\mathrm{12}}−\frac{\mathrm{3}\centerdot\mathrm{0}^{\mathrm{3}} }{\mathrm{12}}\right) \\ $$$${V}=\pi\left(\frac{\mathrm{3}\centerdot\mathrm{8}}{\mathrm{12}}\right) \\ $$$${V}=\pi\left(\frac{\mathrm{24}}{\mathrm{12}}\right) \\ $$$${V}=\mathrm{2}\pi \\ $$

Answered by mr W last updated on 02/Jan/25

if rotated about y−axis:  V=2π×((2×2)/3)×((2×1)/2)=((8π)/3)    if rotated about x−axis:  V=2π((2/3)×((2×2)/2)−(1/3)×((2×1)/2))=2π

$${if}\:{rotated}\:{about}\:{y}−{axis}: \\ $$$${V}=\mathrm{2}\pi×\frac{\mathrm{2}×\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{2}×\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{8}\pi}{\mathrm{3}} \\ $$$$ \\ $$$${if}\:{rotated}\:{about}\:{x}−{axis}: \\ $$$${V}=\mathrm{2}\pi\left(\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{2}×\mathrm{2}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{2}×\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}\pi \\ $$

Commented by universe last updated on 02/Jan/25

without integral sir   can u explain little bit

$${without}\:{integral}\:{sir}\: \\ $$$${can}\:{u}\:{explain}\:{little}\:{bit} \\ $$

Commented by mr W last updated on 02/Jan/25

V_(about y−axis) =∫_A 2πxdA=2πx_S A  V_(about x−axis) =∫_A 2πydA=2πy_S A  (x_S , y_S )=center of area  see also Q158237

$${V}_{{about}\:{y}−{axis}} =\underset{{A}} {\int}\mathrm{2}\pi{xdA}=\mathrm{2}\pi{x}_{{S}} {A} \\ $$$${V}_{{about}\:{x}−{axis}} =\underset{{A}} {\int}\mathrm{2}\pi{ydA}=\mathrm{2}\pi{y}_{{S}} {A} \\ $$$$\left({x}_{{S}} ,\:{y}_{{S}} \right)={center}\:{of}\:{area} \\ $$$${see}\:{also}\:{Q}\mathrm{158237} \\ $$

Commented by universe last updated on 02/Jan/25

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com