Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 128591 by BHOOPENDRA last updated on 09/Jan/21

verify the gauss divergence theorem  f=(x^2 −yz)i^� +(y^2 −zx)j^� +(z^2 −xy)k^�   over the region R bounded by the     parallelepiped 0≤x≤a,0≤y≤b,  0≤z≤c

$${verify}\:{the}\:{gauss}\:{divergence}\:{theorem} \\ $$$${f}=\left({x}^{\mathrm{2}} −{yz}\right)\hat {{i}}+\left({y}^{\mathrm{2}} −{zx}\right)\hat {\mathrm{j}}+\left({z}^{\mathrm{2}} −{xy}\right)\hat {{k}} \\ $$$${over}\:{the}\:{region}\:{R}\:{bounded}\:{by}\:{the}\: \\ $$$$ \\ $$$${parallelepiped}\:\mathrm{0}\leqslant{x}\leqslant{a},\mathrm{0}\leqslant{y}\leqslant{b}, \\ $$$$\mathrm{0}\leqslant{z}\leqslant{c} \\ $$

Commented by BHOOPENDRA last updated on 09/Jan/21

help me out this?

$${help}\:{me}\:{out}\:{this}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com