Question Number 26126 by NECx last updated on 20/Dec/17 | ||
$${using}\:\mathrm{1}{st}\:{principle}\:{find}\:{the} \\ $$$${derivative}\:{of} \\ $$$$\:\:\:\:\:\:\:\:{y}={x}^{{x}} \\ $$ | ||
Commented by abdo imad last updated on 20/Dec/17 | ||
$${answer}\:{to}\:{question}\:\:{ew}\:{have}\:{y}=\:{e}^{{xlnx}} \:\:−−>\:\frac{{dy}}{{dx}}\:\:=\:\:\frac{{d}\left({xln}\left({x}\right)\right)}{{dx}}\:\:.{x}^{{x}} \\ $$$$=\:\:\left({lnx}\:\:+\:\mathrm{1}\right)\:\:{x}^{{x}} \:\:{with}\:{the}\:{condition}\:\:{x}>\mathrm{0}\:\:. \\ $$ | ||