Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 95722 by rb222 last updated on 27/May/20

use cylinder ring method    y = 2x−1  y = −2x + 3  x = 2     y−axis

$${use}\:{cylinder}\:{ring}\:{method} \\ $$$$ \\ $$$${y}\:=\:\mathrm{2}{x}−\mathrm{1} \\ $$$${y}\:=\:−\mathrm{2}{x}\:+\:\mathrm{3} \\ $$$${x}\:=\:\mathrm{2}\: \\ $$$$ \\ $$$${y}−{axis}\: \\ $$$$ \\ $$$$ \\ $$

Answered by i jagooll last updated on 27/May/20

vol = 2π ∫_1 ^2 x(2x−1−(−2x+3))dx  = 2π ∫_1 ^2 x(4x−4) dx   =2π ∫_1 ^2 (4x^2 −4x) dx   =2π [ (4/3)x^3 −2x^2  ]_1 ^2   =2π [ (4/3)(7)−2(3) ]  =2π (((28−18)/3)) = ((20π)/3)

$$\mathrm{vol}\:=\:\mathrm{2}\pi\:\overset{\mathrm{2}} {\int}_{\mathrm{1}} {x}\left(\mathrm{2}{x}−\mathrm{1}−\left(−\mathrm{2}{x}+\mathrm{3}\right)\right){dx} \\ $$$$=\:\mathrm{2}\pi\:\overset{\mathrm{2}} {\int}_{\mathrm{1}} {x}\left(\mathrm{4}{x}−\mathrm{4}\right)\:{dx}\: \\ $$$$=\mathrm{2}\pi\:\overset{\mathrm{2}} {\int}_{\mathrm{1}} \left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}\right)\:{dx}\: \\ $$$$=\mathrm{2}\pi\:\left[\:\frac{\mathrm{4}}{\mathrm{3}}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} \:\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$=\mathrm{2}\pi\:\left[\:\frac{\mathrm{4}}{\mathrm{3}}\left(\mathrm{7}\right)−\mathrm{2}\left(\mathrm{3}\right)\:\right] \\ $$$$=\mathrm{2}\pi\:\left(\frac{\mathrm{28}−\mathrm{18}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{20}\pi}{\mathrm{3}}\: \\ $$

Commented by rb222 last updated on 27/May/20

thanks sir

$${thanks}\:{sir} \\ $$

Answered by john santu last updated on 27/May/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com