Question Number 95722 by rb222 last updated on 27/May/20 | ||
$${use}\:{cylinder}\:{ring}\:{method} \\ $$$$ \\ $$$${y}\:=\:\mathrm{2}{x}−\mathrm{1} \\ $$$${y}\:=\:−\mathrm{2}{x}\:+\:\mathrm{3} \\ $$$${x}\:=\:\mathrm{2}\: \\ $$$$ \\ $$$${y}−{axis}\: \\ $$$$ \\ $$$$ \\ $$ | ||
Answered by i jagooll last updated on 27/May/20 | ||
$$\mathrm{vol}\:=\:\mathrm{2}\pi\:\overset{\mathrm{2}} {\int}_{\mathrm{1}} {x}\left(\mathrm{2}{x}−\mathrm{1}−\left(−\mathrm{2}{x}+\mathrm{3}\right)\right){dx} \\ $$$$=\:\mathrm{2}\pi\:\overset{\mathrm{2}} {\int}_{\mathrm{1}} {x}\left(\mathrm{4}{x}−\mathrm{4}\right)\:{dx}\: \\ $$$$=\mathrm{2}\pi\:\overset{\mathrm{2}} {\int}_{\mathrm{1}} \left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}\right)\:{dx}\: \\ $$$$=\mathrm{2}\pi\:\left[\:\frac{\mathrm{4}}{\mathrm{3}}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} \:\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$=\mathrm{2}\pi\:\left[\:\frac{\mathrm{4}}{\mathrm{3}}\left(\mathrm{7}\right)−\mathrm{2}\left(\mathrm{3}\right)\:\right] \\ $$$$=\mathrm{2}\pi\:\left(\frac{\mathrm{28}−\mathrm{18}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{20}\pi}{\mathrm{3}}\: \\ $$ | ||
Commented by rb222 last updated on 27/May/20 | ||
$${thanks}\:{sir} \\ $$ | ||
Answered by john santu last updated on 27/May/20 | ||