Question and Answers Forum

All Questions      Topic List

Logic Questions

Previous in All Question      Next in All Question      

Previous in Logic      Next in Logic      

Question Number 130782 by EDWIN88 last updated on 28/Jan/21

u_(n+1)  = u_n  +2u_(n−1)  +2u_0    u_0 =1 ⇒u_n =?

$${u}_{{n}+\mathrm{1}} \:=\:{u}_{{n}} \:+\mathrm{2}{u}_{{n}−\mathrm{1}} \:+\mathrm{2}{u}_{\mathrm{0}} \: \\ $$$${u}_{\mathrm{0}} =\mathrm{1}\:\Rightarrow{u}_{{n}} =? \\ $$

Commented by prakash jain last updated on 29/Jan/21

u_(n+1) =u_n +2u_(n−1) +2  u_(n+1) −u_n +2u_(n−1) =2  For homegeneous solution we  can take  x^(n+1) −x^n −2x^(n−1) =0  x^2 −x−2=0  u_2 =u_1 +4u_0

$${u}_{{n}+\mathrm{1}} ={u}_{{n}} +\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{2} \\ $$$${u}_{{n}+\mathrm{1}} −{u}_{{n}} +\mathrm{2}{u}_{{n}−\mathrm{1}} =\mathrm{2} \\ $$$$\mathrm{For}\:\mathrm{homegeneous}\:\mathrm{solution}\:\mathrm{we} \\ $$$$\mathrm{can}\:\mathrm{take} \\ $$$${x}^{{n}+\mathrm{1}} −{x}^{{n}} −\mathrm{2}{x}^{{n}−\mathrm{1}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{2}=\mathrm{0} \\ $$$${u}_{\mathrm{2}} ={u}_{\mathrm{1}} +\mathrm{4}{u}_{\mathrm{0}} \\ $$

Commented by prakash jain last updated on 29/Jan/21

u_(n+1) =u_n +2u_(n−1) +2  u_(n+1) −u_2 −2u_(n−1) =2  Homigenous solution  x^2 −x−2=0⇒x=−1,2  u_n =c_1 (−1)^n +c_2 2^n   General Solution  u_n =c_1 (−1)^n +c_2 2^n −1  you need to know at least two  values to determine sequence

$${u}_{{n}+\mathrm{1}} ={u}_{{n}} +\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{2} \\ $$$${u}_{{n}+\mathrm{1}} −{u}_{\mathrm{2}} −\mathrm{2}{u}_{{n}−\mathrm{1}} =\mathrm{2} \\ $$$$\mathrm{Homigenous}\:\mathrm{solution} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{2}=\mathrm{0}\Rightarrow{x}=−\mathrm{1},\mathrm{2} \\ $$$${u}_{{n}} ={c}_{\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} +{c}_{\mathrm{2}} \mathrm{2}^{{n}} \\ $$$$\mathrm{General}\:\mathrm{Solution} \\ $$$${u}_{{n}} ={c}_{\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} +{c}_{\mathrm{2}} \mathrm{2}^{{n}} −\mathrm{1} \\ $$$$\mathrm{you}\:\mathrm{need}\:\mathrm{to}\:\mathrm{know}\:\mathrm{at}\:\mathrm{least}\:\mathrm{two} \\ $$$$\mathrm{values}\:\mathrm{to}\:\mathrm{determine}\:\mathrm{sequence} \\ $$

Commented by EDWIN88 last updated on 29/Jan/21

thank you

$${thank}\:{you} \\ $$

Answered by mr W last updated on 29/Jan/21

say u_1 =2, u_0 =1  u_(n+1) =u_n +2u_(n−1) +2  let u_n =a_n +c  a_(n+1) +c=a_n +c+2(a_(n−1) +c)+2  a_(n+1) =a_n +2a_(n−1) +2c+2  let 2c+2=0, i.e. c=−1  ⇒u_n =a_n −1  ⇒a_(n+1) −a_n −2a_(n−1) =0  x^2 −x−2=0  (x+1)(x−2)=0  ⇒x=−1, 2  a_n =A(−1)^n +B2^n   a_0 =A+B=u_0 +1=1+1=2  a_1 =−A+2B=u_1 +1=2+1=3  ⇒B=(5/3), A=(1/3)  ⇒u_n =(1/3)[5×2^n +(−1)^n ]−1

$${say}\:{u}_{\mathrm{1}} =\mathrm{2},\:{u}_{\mathrm{0}} =\mathrm{1} \\ $$$${u}_{{n}+\mathrm{1}} ={u}_{{n}} +\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{2} \\ $$$${let}\:{u}_{{n}} ={a}_{{n}} +{c} \\ $$$${a}_{{n}+\mathrm{1}} +{c}={a}_{{n}} +{c}+\mathrm{2}\left({a}_{{n}−\mathrm{1}} +{c}\right)+\mathrm{2} \\ $$$${a}_{{n}+\mathrm{1}} ={a}_{{n}} +\mathrm{2}{a}_{{n}−\mathrm{1}} +\mathrm{2}{c}+\mathrm{2} \\ $$$${let}\:\mathrm{2}{c}+\mathrm{2}=\mathrm{0},\:{i}.{e}.\:{c}=−\mathrm{1} \\ $$$$\Rightarrow{u}_{{n}} ={a}_{{n}} −\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}+\mathrm{1}} −{a}_{{n}} −\mathrm{2}{a}_{{n}−\mathrm{1}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{2}=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=−\mathrm{1},\:\mathrm{2} \\ $$$${a}_{{n}} ={A}\left(−\mathrm{1}\right)^{{n}} +{B}\mathrm{2}^{{n}} \\ $$$${a}_{\mathrm{0}} ={A}+{B}={u}_{\mathrm{0}} +\mathrm{1}=\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$${a}_{\mathrm{1}} =−{A}+\mathrm{2}{B}={u}_{\mathrm{1}} +\mathrm{1}=\mathrm{2}+\mathrm{1}=\mathrm{3} \\ $$$$\Rightarrow{B}=\frac{\mathrm{5}}{\mathrm{3}},\:{A}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{u}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{5}×\mathrm{2}^{{n}} +\left(−\mathrm{1}\right)^{{n}} \right]−\mathrm{1} \\ $$

Commented by EDWIN88 last updated on 29/Jan/21

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com