Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130214 by Lordose last updated on 23/Jan/21

∫(u^2 /((1+u^2 )^2 ))du

$$\int\frac{\mathrm{u}^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{du} \\ $$

Answered by liberty last updated on 23/Jan/21

J=∫ (((u^2 +1)−1)/((1+u^2 )^2 )) du = ∫ (du/(1+u^2 ))−∫(du/((1+u^2 )^2 ))  J_1 =∫ (du/(1+u^2 )) = tan^(−1) (u)+c_1   J_2 =∫ (du/((1+u^2 )^2 )) ; u = tan q  J_2 =∫ ((sec^2 q dq)/(sec^4 q)) = ∫ cos^2 q dq  J_2 = (1/2)q+(1/4)sin 2q+c_2   J_2 =((tan^(−1) (u))/2)+(u/(2(1+u^2 )))+c_2   ∴ J= (1/2)tan^(−1) (u)−(1/2) (u/((1+u)^2 ))+C

$$\mathrm{J}=\int\:\frac{\left(\mathrm{u}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{1}}{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\mathrm{du}\:=\:\int\:\frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }−\int\frac{\mathrm{du}}{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\mathrm{J}_{\mathrm{1}} =\int\:\frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{u}\right)+\mathrm{c}_{\mathrm{1}} \\ $$$$\mathrm{J}_{\mathrm{2}} =\int\:\frac{\mathrm{du}}{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:;\:\mathrm{u}\:=\:\mathrm{tan}\:\mathrm{q} \\ $$$$\mathrm{J}_{\mathrm{2}} =\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{q}\:\mathrm{dq}}{\mathrm{sec}\:^{\mathrm{4}} \mathrm{q}}\:=\:\int\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{q}\:\mathrm{dq} \\ $$$$\mathrm{J}_{\mathrm{2}} =\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{q}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2q}+\mathrm{c}_{\mathrm{2}} \\ $$$$\mathrm{J}_{\mathrm{2}} =\frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{u}\right)}{\mathrm{2}}+\frac{\mathrm{u}}{\mathrm{2}\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)}+\mathrm{c}_{\mathrm{2}} \\ $$$$\therefore\:\mathrm{J}=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{u}\right)−\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{u}}{\left(\mathrm{1}+\mathrm{u}\right)^{\mathrm{2}} }+\mathrm{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com