Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 47331 by MJS last updated on 08/Nov/18

this remained unsolved...  ∣x−(3/4)∣×∣x+(5/4)∣=3; x∈C

$$\mathrm{this}\:\mathrm{remained}\:\mathrm{unsolved}... \\ $$$$\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}\mid×\mid{x}+\frac{\mathrm{5}}{\mathrm{4}}\mid=\mathrm{3};\:{x}\in\mathbb{C} \\ $$

Commented by MJS last updated on 08/Nov/18

∣a−(3/4)+bi∣×∣a+(5/4)+bi∣=3 with a, b ∈R  (√((a−(3/4))^2 +b^2 ))(√((a+(5/4))^2 +b^2 ))=3  b^4 +(2a^2 +a+((17)/8))b^2 +(a^4 +a^3 −((13)/8)a^2 −((15)/(16))a−((2079)/(256)))=0  b^2 =−a^2 −(a/2)−((17)/(16))±(√(4a^2 +2a+((37)/4)))  b∈R ⇒ b=±(√(−a^2 −(a/2)−((17)/(16))+(√(4a^2 +2a+((37)/4)))))  (√(4a^2 +2a+((37)/4)))≥a^2 +(a/2)+((17)/(16)) ⇒ −(9/4)≤a≤(7/4)    solution is  x=a±i(√(−a^2 −(a/2)−((17)/(16))+(√(4a^2 +2a+((37)/4))))) with −(9/4)≤a≤(7/4)

$$\mid{a}−\frac{\mathrm{3}}{\mathrm{4}}+{b}\mathrm{i}\mid×\mid{a}+\frac{\mathrm{5}}{\mathrm{4}}+{b}\mathrm{i}\mid=\mathrm{3}\:\mathrm{with}\:{a},\:{b}\:\in\mathbb{R} \\ $$$$\sqrt{\left({a}−\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} }\sqrt{\left({a}+\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} }=\mathrm{3} \\ $$$${b}^{\mathrm{4}} +\left(\mathrm{2}{a}^{\mathrm{2}} +{a}+\frac{\mathrm{17}}{\mathrm{8}}\right){b}^{\mathrm{2}} +\left({a}^{\mathrm{4}} +{a}^{\mathrm{3}} −\frac{\mathrm{13}}{\mathrm{8}}{a}^{\mathrm{2}} −\frac{\mathrm{15}}{\mathrm{16}}{a}−\frac{\mathrm{2079}}{\mathrm{256}}\right)=\mathrm{0} \\ $$$${b}^{\mathrm{2}} =−{a}^{\mathrm{2}} −\frac{{a}}{\mathrm{2}}−\frac{\mathrm{17}}{\mathrm{16}}\pm\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{2}{a}+\frac{\mathrm{37}}{\mathrm{4}}} \\ $$$${b}\in\mathbb{R}\:\Rightarrow\:{b}=\pm\sqrt{−{a}^{\mathrm{2}} −\frac{{a}}{\mathrm{2}}−\frac{\mathrm{17}}{\mathrm{16}}+\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{2}{a}+\frac{\mathrm{37}}{\mathrm{4}}}} \\ $$$$\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{2}{a}+\frac{\mathrm{37}}{\mathrm{4}}}\geqslant{a}^{\mathrm{2}} +\frac{{a}}{\mathrm{2}}+\frac{\mathrm{17}}{\mathrm{16}}\:\Rightarrow\:−\frac{\mathrm{9}}{\mathrm{4}}\leqslant{a}\leqslant\frac{\mathrm{7}}{\mathrm{4}} \\ $$$$ \\ $$$$\mathrm{solution}\:\mathrm{is} \\ $$$${x}={a}\pm\mathrm{i}\sqrt{−{a}^{\mathrm{2}} −\frac{{a}}{\mathrm{2}}−\frac{\mathrm{17}}{\mathrm{16}}+\sqrt{\mathrm{4}{a}^{\mathrm{2}} +\mathrm{2}{a}+\frac{\mathrm{37}}{\mathrm{4}}}}\:\mathrm{with}\:−\frac{\mathrm{9}}{\mathrm{4}}\leqslant{a}\leqslant\frac{\mathrm{7}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com