Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192991 by otchereabdullai@gmail.com last updated on 01/Jun/23

the first, third and sixth terms of a  linear sequence are the first three   terms of an exponential sequence.   find the common ratio

$${the}\:{first},\:{third}\:{and}\:{sixth}\:{terms}\:{of}\:{a} \\ $$$${linear}\:{sequence}\:{are}\:{the}\:{first}\:{three}\: \\ $$$${terms}\:{of}\:{an}\:{exponential}\:{sequence}.\: \\ $$$${find}\:{the}\:{common}\:{ratio} \\ $$

Answered by MM42 last updated on 01/Jun/23

l.s : t_1  , t_3   , t_6     ; t_n =t_1 +(n−1)d  e.s: a_1  , a_(2 ) , a_3     ; a_n =a_1 q^(n−1)   a_1 =t_1  &  a_2 =t_3 =t_1 +2d  &  a_3 =t_6 =t_1 +5d  a_1 ×a_3 =(a_2 )^2 ⇒t_1 =4d  ⇒a_1 =4d  &  a_2 =6d  &  a_3 =9d  ⇒q=(3/2) ✓

$${l}.{s}\::\:{t}_{\mathrm{1}} \:,\:{t}_{\mathrm{3}} \:\:,\:{t}_{\mathrm{6}} \:\:\:\:;\:{t}_{{n}} ={t}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d} \\ $$$${e}.{s}:\:{a}_{\mathrm{1}} \:,\:{a}_{\mathrm{2}\:} ,\:{a}_{\mathrm{3}} \:\:\:\:;\:{a}_{{n}} ={a}_{\mathrm{1}} {q}^{{n}−\mathrm{1}} \\ $$$${a}_{\mathrm{1}} ={t}_{\mathrm{1}} \:\&\:\:{a}_{\mathrm{2}} ={t}_{\mathrm{3}} ={t}_{\mathrm{1}} +\mathrm{2}{d}\:\:\&\:\:{a}_{\mathrm{3}} ={t}_{\mathrm{6}} ={t}_{\mathrm{1}} +\mathrm{5}{d} \\ $$$${a}_{\mathrm{1}} ×{a}_{\mathrm{3}} =\left({a}_{\mathrm{2}} \right)^{\mathrm{2}} \Rightarrow{t}_{\mathrm{1}} =\mathrm{4}{d} \\ $$$$\Rightarrow{a}_{\mathrm{1}} =\mathrm{4}{d}\:\:\&\:\:{a}_{\mathrm{2}} =\mathrm{6}{d}\:\:\&\:\:{a}_{\mathrm{3}} =\mathrm{9}{d} \\ $$$$\Rightarrow{q}=\frac{\mathrm{3}}{\mathrm{2}}\:\checkmark \\ $$$$ \\ $$

Commented by otchereabdullai@gmail.com last updated on 01/Jun/23

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com