Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 112997 by malwan last updated on 10/Sep/20

∫(( tan x dx)/( (√(sec^3  x + 1)))) = ?

$$\int\frac{\:{tan}\:{x}\:{dx}}{\:\sqrt{{sec}^{\mathrm{3}} \:{x}\:+\:\mathrm{1}}}\:=\:? \\ $$

Commented by MJS_new last updated on 10/Sep/20

sorry I haven′t got the time to finish it but  the path is  ∫((tan x)/( (√(sec^3  x +1))))dx=∫((sin x)/(cos x (√((1/(cos^3  x))+1))))dx  put t=(cos x)^(3/2)

$$\mathrm{sorry}\:\mathrm{I}\:\mathrm{haven}'\mathrm{t}\:\mathrm{got}\:\mathrm{the}\:\mathrm{time}\:\mathrm{to}\:\mathrm{finish}\:\mathrm{it}\:\mathrm{but} \\ $$$$\mathrm{the}\:\mathrm{path}\:\mathrm{is} \\ $$$$\int\frac{\mathrm{tan}\:{x}}{\:\sqrt{\mathrm{sec}^{\mathrm{3}} \:{x}\:+\mathrm{1}}}{dx}=\int\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}\:\sqrt{\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{3}} \:{x}}+\mathrm{1}}}{dx} \\ $$$$\mathrm{put}\:{t}=\left(\mathrm{cos}\:{x}\right)^{\mathrm{3}/\mathrm{2}} \\ $$

Commented by MJS_new last updated on 10/Sep/20

∫((tan x)/( (√(sec^3  x +1))))=       [t=(cos x)^(3/2)  → dx=−((2dt)/(3sin x (√(cos x))))]  =−(2/3)∫(dt/( (√(t^2 +1))))=       [u=t+(√(t^2 +1)) → dt=((√(t^2 +1))/(t+(√(t^2 +1))))du]  =−(2/3)∫(du/u)=−(2/3)ln u =−(2/3)ln (t+(√(t^2 +1))) =  =−(2/3)ln ((cos x)^(3/2) +(√(1+cos^3  x))) +C

$$\int\frac{\mathrm{tan}\:{x}}{\:\sqrt{\mathrm{sec}^{\mathrm{3}} \:{x}\:+\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{t}=\left(\mathrm{cos}\:{x}\right)^{\mathrm{3}/\mathrm{2}} \:\rightarrow\:{dx}=−\frac{\mathrm{2}{dt}}{\mathrm{3sin}\:{x}\:\sqrt{\mathrm{cos}\:{x}}}\right] \\ $$$$=−\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{u}={t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}\:\rightarrow\:{dt}=\frac{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{{t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{du}\right] \\ $$$$=−\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{du}}{{u}}=−\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\:{u}\:=−\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\:\left({t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}\right)\:= \\ $$$$=−\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\:\left(\left(\mathrm{cos}\:{x}\right)^{\mathrm{3}/\mathrm{2}} +\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{3}} \:{x}}\right)\:+{C} \\ $$

Commented by malwan last updated on 11/Sep/20

great Sir MJS  thank you so much

$${great}\:{Sir}\:{MJS} \\ $$$${thank}\:{you}\:{so}\:{much} \\ $$

Answered by malwan last updated on 11/Sep/20

another way  ∫(( tan x)/( (√(sec^3 x + 1))))dx=∫(( secx tanx)/(secx(√(sec^3 x+1))))dx  = ∫(( du)/(u(√(u^3 +1)))) [u= sec x]  v^2 =u^3 +1⇒2vdv=3u^2 du⇒du=((2vdv)/(3u^2 ))  ∴∫(( 2vdv)/(3u^2 uv)) = (2/3)∫(( dv)/u^3 )=(2/3)∫(( dv)/(v^2 −1))  =(2/3) (1/2)ln∣((v−1)/(v+1))∣ + c  = (1/3)ln∣(((√(u^3 +1)) −1)/( (√(u^3 +1)) +1))∣ + c  =(1/3)ln∣(((√(sec^3 x+1)) −1)/( (√(sec^3 x+1)) +1))∣ +c

$${another}\:{way} \\ $$$$\int\frac{\:{tan}\:{x}}{\:\sqrt{{sec}^{\mathrm{3}} {x}\:+\:\mathrm{1}}}{dx}=\int\frac{\:{secx}\:{tanx}}{{secx}\sqrt{{sec}^{\mathrm{3}} {x}+\mathrm{1}}}{dx} \\ $$$$=\:\int\frac{\:{du}}{{u}\sqrt{{u}^{\mathrm{3}} +\mathrm{1}}}\:\left[{u}=\:{sec}\:{x}\right] \\ $$$${v}^{\mathrm{2}} ={u}^{\mathrm{3}} +\mathrm{1}\Rightarrow\mathrm{2}{vdv}=\mathrm{3}{u}^{\mathrm{2}} {du}\Rightarrow{du}=\frac{\mathrm{2}{vdv}}{\mathrm{3}{u}^{\mathrm{2}} } \\ $$$$\therefore\int\frac{\:\mathrm{2}{vdv}}{\mathrm{3}{u}^{\mathrm{2}} {uv}}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\int\frac{\:{dv}}{{u}^{\mathrm{3}} }=\frac{\mathrm{2}}{\mathrm{3}}\int\frac{\:{dv}}{{v}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\:\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{{v}−\mathrm{1}}{{v}+\mathrm{1}}\mid\:+\:{c} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}{ln}\mid\frac{\sqrt{{u}^{\mathrm{3}} +\mathrm{1}}\:−\mathrm{1}}{\:\sqrt{{u}^{\mathrm{3}} +\mathrm{1}}\:+\mathrm{1}}\mid\:+\:{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{ln}\mid\frac{\sqrt{{sec}^{\mathrm{3}} {x}+\mathrm{1}}\:−\mathrm{1}}{\:\sqrt{{sec}^{\mathrm{3}} {x}+\mathrm{1}}\:+\mathrm{1}}\mid\:+{c} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com