Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 197944 by liuxinnan last updated on 05/Oct/23

tan(π/(12))=((sinα−sin(π/(12)))/(cosα+cos(π/(12))))  α=?

$${tan}\frac{\pi}{\mathrm{12}}=\frac{{sin}\alpha−{sin}\frac{\pi}{\mathrm{12}}}{{cos}\alpha+{cos}\frac{\pi}{\mathrm{12}}} \\ $$$$\alpha=? \\ $$

Answered by MM42 last updated on 05/Oct/23

sin(π/(12))×cosα+sin(π/(12))×cos(π/(12))=sinα×cos(π/(12))−sin(π/(12))×cos(π/(12))  ⇒sin(α−(π/(12)))=2sin(π/(12))×cos(π/(12))=sin(π/6)  ⇒ { ((α=2kπ+(π/4)  ✓)),((α=2kπ+((11π)/(12))   ×)) :}

$${sin}\frac{\pi}{\mathrm{12}}×{cos}\alpha+{sin}\frac{\pi}{\mathrm{12}}×{cos}\frac{\pi}{\mathrm{12}}={sin}\alpha×{cos}\frac{\pi}{\mathrm{12}}−{sin}\frac{\pi}{\mathrm{12}}×{cos}\frac{\pi}{\mathrm{12}} \\ $$$$\Rightarrow{sin}\left(\alpha−\frac{\pi}{\mathrm{12}}\right)=\mathrm{2}{sin}\frac{\pi}{\mathrm{12}}×{cos}\frac{\pi}{\mathrm{12}}={sin}\frac{\pi}{\mathrm{6}} \\ $$$$\Rightarrow\begin{cases}{\alpha=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{4}}\:\:\checkmark}\\{\alpha=\mathrm{2}{k}\pi+\frac{\mathrm{11}\pi}{\mathrm{12}}\:\:\:×}\end{cases}\:\:\: \\ $$

Commented by MM42 last updated on 05/Oct/23

Sir  “W”  in the denominator of the fraction  is written “ cosα+cos(π/(12)) ”

$${Sir}\:\:``{W}'' \\ $$$${in}\:{the}\:{denominator}\:{of}\:{the}\:{fraction} \\ $$$${is}\:{written}\:``\:{cos}\alpha+{cos}\frac{\pi}{\mathrm{12}}\:'' \\ $$

Commented by mr W last updated on 06/Oct/23

yes. i noticed it also, but too late.

$${yes}.\:{i}\:{noticed}\:{it}\:{also},\:{but}\:{too}\:{late}. \\ $$

Commented by MM42 last updated on 06/Oct/23

 ⋛M

$$\:\cancel{\lesseqgtr\underbrace{\boldsymbol{\mathrm{M}}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com